【題目】設(shè)函數(shù)f(x)=x2﹣ax+a+3,g(x)=ax﹣2a.
(1)若函數(shù)h(x)=f(x)﹣g(x)在[﹣2,0]上有兩個零點,求實數(shù)a的取值范圍;
(2)若存在x0∈R,使得f(x0)≤0與g(x0)≤0同時成立,求實數(shù)a的最小值.

【答案】
(1)

解:由已知,h(x)=f(x)﹣g(x)=x2﹣2ax+3a+3=0在[﹣2,0]上有兩個不同的實數(shù)解,

所以 ,

,

解得 ,


(2)

解:由已知, ,

(1)+(2)得 ,得a≥3,

再由(2)得x0≤2,由(1)得 ,得x0>1,

于是,問題等價于:a≥3,且存在x0∈(1,2]滿足 ,

令t=x0﹣1∈(0,1], ,

因為 在(0,1]上單調(diào)遞減,

所以φ(t)≥φ(1)=7,即a≥7,

故實數(shù)a的最小值為7.


【解析】(1)由h(x)在區(qū)間內(nèi)的兩個零點,結(jié)合圖形,得到需要滿足的條件.(2)由f(x0)≤0與g(x0)≤0同時成立,得到得a≥3,可將問題轉(zhuǎn)化為最值問題,由單調(diào)性得到最值,即可.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】閱讀如圖所示的程序框圖,當輸出的結(jié)果S為0時,判斷框中應(yīng)填(
A.n≤4
B.n≤5
C.n≤7
D.n≤8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知四棱錐的底面為直角梯形, , ,且, .

(1)求證:平面平面

(2)設(shè),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】精準扶貧是鞏固溫飽成果、加快脫貧致富、實現(xiàn)中華民族偉大“中國夢”的重要保障.某地政府在對某鄉(xiāng)鎮(zhèn)企業(yè)實施精準扶貧的工作中,準備投入資金將當?shù)剞r(nóng)產(chǎn)品進行二次加工后進行推廣促銷,預(yù)計該批產(chǎn)品銷售量萬件(生產(chǎn)量與銷售量相等)與推廣促銷費萬元之間的函數(shù)關(guān)系為(其中推廣促銷費不能超過5千元).已知加工此農(nóng)產(chǎn)品還要投入成本萬元(不包括推廣促銷費用),若加工后的每件成品的銷售價格定為元/件.

(1)試將該批產(chǎn)品的利潤萬元表示為推廣促銷費萬元的函數(shù);(利潤=銷售額-成本-推廣促銷費)

(2)當推廣促銷費投入多少萬元時,此批產(chǎn)品的利潤最大?最大利潤為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)圓的圓心為,直線過點且與軸不重合,交圓兩點,過的平行線交于點.

(1)證明:為定值,并寫出點的軌跡方程;

(2)設(shè)點的軌跡為曲線,直線兩點,為坐標原點,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若學生一天學習數(shù)學超過兩個小時的概率為(每天是相互獨立沒有影響的),一周內(nèi)至少有四天每天學習數(shù)學超過兩個小時,就說該生本周數(shù)學學習是投入的.

(Ⅰ)①設(shè)學生本周一天學習數(shù)學超過兩個小時的天數(shù)為的分布列與數(shù)學期望

②求學生本周數(shù)學學習投入的概率.

(Ⅱ)為了研究學生學習數(shù)學的投入程度和本周數(shù)學周練成績的關(guān)系,隨機在年級中抽取了名學生進行調(diào)查,所得數(shù)據(jù)如下表所示:

成績理想

成績不太理想

合計

數(shù)學學習投入

20

10

30

數(shù)學學習不太投入

10

15

25

合計

30

25

55

根據(jù)上述數(shù)據(jù)能否有的把握認為“學生學習數(shù)學的投入程度和本周數(shù)學成績兩事件有關(guān)”?

附:

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)對一切實數(shù)都有 成立,且.

(1)求的值;

(2)求的解析式;

(3)已知,設(shè):當時,不等式 恒成立;Q:當時,是單調(diào)函數(shù)。如果滿足成立的的集合記為,滿足Q成立的的集合記為,求A∩(CRB)(為全集).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知四棱錐P﹣ABCD的底面ABCD為菱形,且∠ABC=60°,
AB=PC=2,PA=PB=

(1)求證:平面PAB⊥平面ABCD;
(2)設(shè)H是PB上的動點,求CH與平面PAB所成最大角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】等差數(shù)列中, , 其前項和為.

1求數(shù)列的通項公式;

(2)設(shè)數(shù)列滿足,其前項和為為,求證: .

查看答案和解析>>

同步練習冊答案