【題目】已知橢圓C的方程為+=1,A、B為橢圓C的左、右頂點(diǎn),P為橢圓C上不同于A、B的動(dòng)點(diǎn),直線x=4與直線PA、PB分別交于M、N兩點(diǎn);若D(7,0),則過D、M、N三點(diǎn)的圓必過x軸上不同于點(diǎn)D的定點(diǎn),其坐標(biāo)為________.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓方程,其左焦點(diǎn)、上頂點(diǎn)和左頂點(diǎn)分別為, , ,坐標(biāo)原點(diǎn)為,且線段, , 的長度成等差數(shù)列.
(Ⅰ)求橢圓的離心率;
(Ⅱ)若過點(diǎn)的一條直線交橢圓于點(diǎn), ,交軸于點(diǎn),使得線段被點(diǎn), 三等分,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在海島A上有一座海拔1千米的山,山頂設(shè)有一個(gè)觀察站P,上午11時(shí),測得一輪船在島北偏東30°,俯角為30°的B處,到11時(shí)10分又測得該船在島北偏西60°,俯角為60°的C處.
(1)求船的航行速度是每小時(shí)多少千米?
(2)又經(jīng)過一段時(shí)間后,船到達(dá)海島的正西方向的D處,問此時(shí)船距島A有多遠(yuǎn)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 是平行四邊行, 平面, // , , , .
(1)證明: //平面;
(2)求證:平面平面;
(3)求直線與平面所成角的正弦值;
(4)求二面角 的平面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面內(nèi)一動(dòng)點(diǎn)與兩定點(diǎn)和連線的斜率之積等于.
(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;
(Ⅱ)設(shè)直線: ()與軌跡交于、兩點(diǎn),線段的垂直平分線交軸于點(diǎn),當(dāng)變化時(shí),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若圓上有四個(gè)不同的點(diǎn)到直線的距離為2,則的取值范圍是( )
A. (-12,8) B. (-8,12) C. (-13,17) D. (-17,13)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面是平行四邊形,側(cè)面是邊長為2的正三角形, , .
(Ⅰ)求證:平面平面;
(Ⅱ)設(shè)是棱上的點(diǎn),當(dāng)平面時(shí),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中, , 是自然對數(shù)的底數(shù).
(Ⅰ)討論的單調(diào)性;
(Ⅱ)設(shè)函數(shù),證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù)f(x)=sin(2x+ ),下列命題: ①函數(shù)圖象關(guān)于直線x=﹣ 對稱;
②函數(shù)圖象關(guān)于點(diǎn)( ,0)對稱;
③函數(shù)圖象可看作是把y=sin2x的圖象向左平移個(gè) 單位而得到;
④函數(shù)圖象可看作是把y=sin(x+ )的圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來的 倍(縱坐標(biāo)不變)而得到;其中正確的命題是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com