已知橢圓:的右焦點在圓上,直線交橢圓于、兩點.
(1)求橢圓的方程;
(2)若(為坐標(biāo)原點),求的值;
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,為半圓,為半圓直徑,為半圓圓心,且,為線段的中點,已知,曲線過點,動點在曲線上運動且保持的值不變.
(I)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求曲線的方程;
(II)過點的直線與曲線交于兩點,與所在直線交于點,,證明:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知動圓過定點A(4,0), 且在y軸上截得的弦MN的長為8.
(Ⅰ) 求動圓圓心的軌跡C的方程;
(Ⅱ) 已知點B(-1,0), 設(shè)不垂直于x軸的直線l與軌跡C交于不同的兩點P, Q, 若x軸是的角平分線, 證明直線l過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓(a>b>0)的焦距為4,且與橢圓有相同的離心率,斜率為k的直線l經(jīng)過點M(0,1),與橢圓C交于不同兩點A、B.
(1)求橢圓C的標(biāo)準方程;
(2)當(dāng)橢圓C的右焦點F在以AB為直徑的圓內(nèi)時,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
以原點為極點,以軸的正半軸為極軸建立極坐標(biāo)系,已知曲線,過點的直線的參數(shù)方程為,設(shè)直線與曲線分別交于;
(1)寫出曲線和直線的普通方程;
(2)若成等比數(shù)列,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點是直角坐標(biāo)平面內(nèi)的動點,點到直線(是正常數(shù))的距離為,到點的距離為,且1.
(1)求動點P所在曲線C的方程;
(2)直線過點F且與曲線C交于不同兩點A、B,分別過A、B點作直線的垂線,對應(yīng)的垂足分別為,求證=;
(3)記,,
(A、B、是(2)中的點),,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線E:y2= 4x,點P(2,O).如圖所示,直線.過點P且與拋物線E交于A(xl,y1)、B( x2,y2)兩點,直線過點P且與拋物線E交于C(x3, y3)、D(x4,y4)兩點.過點P作x軸的垂線,與線段AC和BD分別交于點M、N.
(I)求y1y2的值;
(Ⅱ)求訌:|PM|="|" PN|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,點到兩點,的距離之和為,設(shè)點的軌跡為曲線.
(1)寫出的方程;
(2)設(shè)過點的斜率為()的直線與曲線交于不同的兩點,,點在軸上,且,求點縱坐標(biāo)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com