【題目】已知函數(shù).

(1)求的單調(diào)遞增區(qū)間.

(2)在ΔABC中,角A,B,C所對(duì)的邊分別為ab,c,若f(A)=1,c=10,cosB=,求ΔABC的中線AD的長(zhǎng).

【答案】(1).(2).

【解析】

1)由三角函數(shù)中的恒等變換應(yīng)用化簡(jiǎn)函數(shù)解析式可得fxsin2x),由22x2,kZ,解得fx)的單調(diào)遞增區(qū)間.

2)由題意可解得:sin2A,結(jié)合范圍0,解得A的值,結(jié)合正余弦定理可得解.

(1). 22x2kZ,解得xkZ

所以遞增區(qū)間: kZ.

(2)(1)知,

∴在ΔABC

,

,

ΔABC中,由正弦定理,得

,∴BD=7

ΔABD中,由余弦定理得,

因此ΔABC得中線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A(0,-2),橢圓E (a>b>0)的離心率為,F是橢圓E的右焦點(diǎn),直線AF的斜率為,O為坐標(biāo)原點(diǎn).

(1)E的方程;

(2)設(shè)過(guò)點(diǎn)A的動(dòng)直線lE相交于P,Q兩點(diǎn).當(dāng)OPQ的面積最大時(shí),求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若關(guān)于的不等式的解集為,求實(shí)數(shù)的值;

2)設(shè),若不等式對(duì)都成立,求實(shí)數(shù)的取值范圍;

3)若時(shí),求函數(shù)的零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,直線經(jīng)過(guò)點(diǎn),其傾斜角為.以原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸,與直角坐標(biāo)系取相同的長(zhǎng)度單位,建立極坐標(biāo)系.設(shè)曲線的極坐標(biāo)方程為

1)寫出直線的參數(shù)方程,若直線與曲線有公共點(diǎn),求的取值范圍.

2)設(shè)為曲線上任意一點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四面體SABC中若三條側(cè)棱SA,SBSC兩兩互相垂直,且SA=1,SB=,SC=,則四面體ABCD的外接球的表面積為( )

A.8πB.6πC.4πD.2π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù))的圖象在處的切線為為自然對(duì)數(shù)的底數(shù))

(1)求的值;

(2)若,且對(duì)任意恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市計(jì)劃按月訂購(gòu)一種飲料,每天進(jìn)貨量相同,進(jìn)貨成本每瓶3元,售價(jià)每瓶5元,每天未售出的飲料最后打4折當(dāng)天全部處理完根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫單位:有關(guān)如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間,需求量為300瓶;如果最高氣溫低于20,需求量為100瓶為了確定六月份的訂購(gòu)計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得到下面的頻數(shù)分布表:

最高氣溫

天數(shù)

2

16

36

25

7

4

以最高氣溫位于各區(qū)間的頻率代替最高氣溫位于該區(qū)間的概率.

求六月份這種飲料一天的需求量單位:瓶的分布列,并求出期望EX;

設(shè)六月份一天銷售這種飲料的利潤(rùn)為單位:元,且六月份這種飲料一天的進(jìn)貨量為單位:瓶,請(qǐng)判斷Y的數(shù)學(xué)期望是否在時(shí)取得最大值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方形中,中點(diǎn),將分別沿若、翻折,使得兩點(diǎn)重合,則所形成的立體圖形的外接球的表面積是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.若曲線的極坐標(biāo)方程為點(diǎn)的極坐標(biāo)為,在平面直角坐標(biāo)系中,直線經(jīng)過(guò)點(diǎn),且傾斜角為.

(1)寫出曲線的直角坐標(biāo)方程以及點(diǎn)的直角坐標(biāo);

(2)設(shè)直線與曲線相交于兩點(diǎn),求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案