【題目】已知函數(shù),
(1)若函數(shù)在處的切線與直線垂直,求的值;
(2)討論在R上的單調(diào)性;
(3)對任意,總有成立,求正整數(shù)的最大值。
【答案】(1)1;(2)見解析;(3)2
【解析】
(1)根據(jù)導(dǎo)數(shù)的幾何意義求出切線的斜率,再結(jié)合條件可得;(2)由題意得到,然后根據(jù)的符號可得到函數(shù)的單調(diào)性;(3)將問題轉(zhuǎn)化為不等式對恒成立求解,然后根據(jù)得到對恒成立,令,根據(jù)導(dǎo)數(shù)求出函數(shù)最小值所在的范圍后可得正整數(shù)的最大值.
(1)∵,
∴,
∴.
∵函數(shù)在處的切線與直線垂直,
∴,
解得.
(2)∵,
∴.
①當(dāng)時,恒成立,
∴函數(shù)在R上單調(diào)遞增.
②當(dāng)時,由,得,
且當(dāng)時,單調(diào)遞減;
當(dāng)時,單調(diào)遞增.
綜上可得,當(dāng)時,函數(shù)在R上單調(diào)遞增;
當(dāng)時,在單調(diào)遞減,在上單調(diào)遞增.
(3)由得,
整理得,
由題意得“對任意,總有成立”等價于“不等式對任意恒成立”,
∴,
整理得,
∵,且當(dāng)時,,
∴.
令,
則,且在上單調(diào)遞增,
∵,
∴存在,使得,
且當(dāng)時,單調(diào)遞減;當(dāng)時,單調(diào)遞增.
∴,
又,
∴,,
∴,
∴,
又為正整數(shù),
∴,
∴正整數(shù)的最大值為2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為直角梯形,,平面底面,為的中點(diǎn),是棱的中點(diǎn),.
(1)證明:平面平面.
(2)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是奇函數(shù).
(1)求實數(shù)的值;
(2)設(shè)函數(shù),是否存在非零實數(shù),使得方程恰好有兩個解?若存在,求出的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】朱載堉(1536—1611),明太祖九世孫,音樂家、數(shù)學(xué)家、天文歷算家,在他多達(dá)百萬字的著述中以《樂律全書》最為著名,在西方人眼中他是大百科全書式的學(xué)者王子。他對文藝的最大貢獻(xiàn)是他創(chuàng)建了“十二平均律”,此理論被廣泛應(yīng)用在世界各國的鍵盤樂器上,包括鋼琴,故朱載堉被譽(yù)為“鋼琴理論的鼻祖”。“十二平均律”是指一個八度有13個音,相鄰兩個音之間的頻率之比相等,且最后一個音頻率是最初那個音頻率的2倍,設(shè)第二個音的頻率為,第八個音的頻率為,則等于
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),曲線在點(diǎn)處的切線方程為.
(1)求的解析式;
(2)證明:曲線上任一點(diǎn)處的切線與直線和直線所圍成的三角形面積為定值,并求此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線C:,O為坐標(biāo)原點(diǎn),F為C的右焦點(diǎn),過F的直線與C的兩條漸近線的交點(diǎn)分別為M、N.若OMN為直角三角形,則|MN|=
A. B. 3 C. D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐的底面ABCD是菱形,平面ABCD,,,F,G分別為PD,BC中點(diǎn),.
(Ⅰ)求證:平面PAB;
(Ⅱ)求三棱錐的體積;
(Ⅲ)求證:OP與AB不垂直.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)經(jīng)過短短幾年的發(fā)展,員工近百人.不知何因,人員雖然多了,但員工的實際工作效率還不如從前.年月初,企業(yè)領(lǐng)導(dǎo)按員工年齡從企業(yè)抽選位員工交流,并將被抽取的員工按年齡(單位:歲)分為四組:第一組,第二組,第三組,第四組,且得到如下頻率分布直方圖:
(1)求實數(shù)的值;
(2)若用簡單隨機(jī)抽樣方法從第二組、第三組中再隨機(jī)抽取人作進(jìn)一步交流,求“被抽取得人均來自第二組”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為保障城市蔬菜供應(yīng),某蔬菜種植基地每年投入20萬元搭建甲、乙兩個無公害蔬菜大棚,每個大棚至少要投入2萬元,其中甲大棚種西紅柿,乙大棚種黃瓜.根據(jù)以往的經(jīng)驗,發(fā)現(xiàn)種西紅柿的年收入、種黃瓜的年收入與大棚投入分別滿足,.設(shè)甲大棚的投入為,每年兩個大棚的總收入為.(投入與收入的單位均為萬元)
(Ⅰ)求的值.
(Ⅱ)試問:如何安排甲、乙兩個大棚的投入,才能使年總收人最大?并求最大年總收入.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com