【題目】已知函數(shù),

(1)若函數(shù)處的切線與直線垂直,求的值;

(2)討論在R上的單調(diào)性;

(3)對任意,總有成立,求正整數(shù)的最大值。

【答案】(1)1;(2)見解析;(3)2

【解析】

(1)根據(jù)導(dǎo)數(shù)的幾何意義求出切線的斜率,再結(jié)合條件可得;(2)由題意得到然后根據(jù)的符號可得到函數(shù)的單調(diào)性;(3)將問題轉(zhuǎn)化為不等式恒成立求解,然后根據(jù)得到恒成立,令,根據(jù)導(dǎo)數(shù)求出函數(shù)最小值所在的范圍后可得正整數(shù)的最大值.

(1)

,

∵函數(shù)處的切線與直線垂直,

,

解得

(2)

①當(dāng)時,恒成立,

∴函數(shù)在R上單調(diào)遞增.

②當(dāng)時,由,得,

且當(dāng)時,單調(diào)遞減;

當(dāng)時,單調(diào)遞增.

綜上可得,當(dāng)時,函數(shù)在R上單調(diào)遞增;

當(dāng)時,單調(diào)遞減,在上單調(diào)遞增.

(3),

整理得,

由題意得“對任意,總有成立”等價于“不等式對任意恒成立”,

,

整理得,

,且當(dāng)時,,

,

,且在上單調(diào)遞增,

∴存在,使得,

且當(dāng),單調(diào)遞減;當(dāng),單調(diào)遞增

,

,

,

為正整數(shù),

,

正整數(shù)的最大值為2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形,,平面底面,的中點(diǎn),是棱的中點(diǎn),.

1)證明:平面平面.

2)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是奇函數(shù).

(1)求實數(shù)的值;

(2)設(shè)函數(shù),是否存在非零實數(shù),使得方程恰好有兩個解?若存在,求出的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】朱載堉(1536—1611),明太祖九世孫,音樂家、數(shù)學(xué)家、天文歷算家,在他多達(dá)百萬字的著述中以《樂律全書》最為著名,在西方人眼中他是大百科全書式的學(xué)者王子。他對文藝的最大貢獻(xiàn)是他創(chuàng)建了“十二平均律”,此理論被廣泛應(yīng)用在世界各國的鍵盤樂器上,包括鋼琴,故朱載堉被譽(yù)為“鋼琴理論的鼻祖”。“十二平均律”是指一個八度有13個音,相鄰兩個音之間的頻率之比相等,且最后一個音頻率是最初那個音頻率的2倍,設(shè)第二個音的頻率為,第八個音的頻率為,則等于

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),曲線在點(diǎn)處的切線方程為.

1)求的解析式;

(2)證明:曲線上任一點(diǎn)處的切線與直線和直線所圍成的三角形面積為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線C,O為坐標(biāo)原點(diǎn),FC的右焦點(diǎn),過F的直線與C的兩條漸近線的交點(diǎn)分別為M、N.OMN為直角三角形,則|MN|=

A. B. 3 C. D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐的底面ABCD是菱形,平面ABCD,,F,G分別為PD,BC中點(diǎn),.

(Ⅰ)求證:平面PAB;

(Ⅱ)求三棱錐的體積;

(Ⅲ)求證:OPAB不垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)經(jīng)過短短幾年的發(fā)展,員工近百人.不知何因,人員雖然多了,但員工的實際工作效率還不如從前.月初,企業(yè)領(lǐng)導(dǎo)按員工年齡從企業(yè)抽選位員工交流,并將被抽取的員工按年齡(單位:歲)分為四組:第一組,第二組,第三組,第四組,且得到如下頻率分布直方圖:

1)求實數(shù)的值;

2)若用簡單隨機(jī)抽樣方法從第二組、第三組中再隨機(jī)抽取人作進(jìn)一步交流,求“被抽取得人均來自第二組”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為保障城市蔬菜供應(yīng),某蔬菜種植基地每年投入20萬元搭建甲、乙兩個無公害蔬菜大棚,每個大棚至少要投入2萬元,其中甲大棚種西紅柿,乙大棚種黃瓜.根據(jù)以往的經(jīng)驗,發(fā)現(xiàn)種西紅柿的年收入、種黃瓜的年收入與大棚投入分別滿足,.設(shè)甲大棚的投入為,每年兩個大棚的總收入為.(投入與收入的單位均為萬元)

(Ⅰ)求的值.

(Ⅱ)試問:如何安排甲、乙兩個大棚的投入,才能使年總收人最大?并求最大年總收入.

查看答案和解析>>

同步練習(xí)冊答案