1.若${(1+x)^6}{(1-2x)^5}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_{11}}{x^{11}}$,求
(1)a1+a2+a3+…+a11
(2)a0+a2+a4+…+a10

分析 用賦值法,在所給的等式中,分別令x=0和1,-1,即可求出對(duì)應(yīng)的值.

解答 解:(1)令x=1,a0+a1+a2+…+a11=-64①
又令x=0,a0=1,
∴a1+a2+a3+…+a11=-65
(2)令x=-1,a0-a1+a2…-a11=0②
①+②則z(a0+a2+a4+…+a10)=-64,
∴a0+a2+a4+…+a10=-32.

點(diǎn)評(píng) 本題主要考查了二項(xiàng)式定理的應(yīng)用問(wèn)題,是給變量賦值的計(jì)算問(wèn)題,關(guān)鍵是根據(jù)要求的結(jié)果,選擇合適的數(shù)值代入,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知直線mx+4y-2=0與直線2x-5y+n=0互相垂直,垂足為(1,p),則m+n-p等于( 。
A.0B.4C.20D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.在△ABC中,A=30°,AB=2,且△ABC的面積為$\sqrt{3}$,則△ABC外接圓的半徑為(  )
A.$\frac{2\sqrt{3}}{3}$B.$\frac{4\sqrt{3}}{3}$C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.在等差數(shù)列{an}中,a5=9,且2a3=a2+6,則a1等于(  )
A.-3B.-2C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.$\frac{1}{(\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}i)^{4}}$=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.關(guān)于曲線C:x2+y4=1,給出下列四個(gè)命題:
①曲線C有兩條對(duì)稱(chēng)軸,一個(gè)對(duì)稱(chēng)中心;  
②曲線C上的點(diǎn)到原點(diǎn)距離的最小值為$\frac{1}{2}$;
③曲線C的長(zhǎng)度l滿(mǎn)足l>4$\sqrt{2}$;     
④曲線C所圍成圖形的面積S滿(mǎn)足π<S<4.
上述命題中,則真命題的個(gè)數(shù)有3個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.若復(fù)數(shù)z=(m2-9)+(m2+2m-3)i是純虛數(shù),其中m∈R,則|z|=12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知cos2α=sinα,則$\frac{1}{sinα}+{cos^4}α$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.如圖所示,在棱長(zhǎng)為 6的正方體ABCD-A1B1C1D1中,點(diǎn)E,F(xiàn)分別是棱C1D1,B1C1的中點(diǎn),過(guò)A,E,F(xiàn)三點(diǎn)作該正方體的截面,則截面的周長(zhǎng)為(  )
A.$18+3\sqrt{2}$B.$6\sqrt{13}+3\sqrt{2}$C.$6\sqrt{5}+9\sqrt{2}$D.$10+3\sqrt{2}+4\sqrt{10}$

查看答案和解析>>

同步練習(xí)冊(cè)答案