若直線x+y-b=0與曲線x=
4-y2
相交于不同的兩點(diǎn),則實(shí)數(shù)b的取值范圍為( 。
A、(-2
2
,2
2
B、(-2,2
2
C、[2,2
2
D、(2,2
2
]
考點(diǎn):直線與圓的位置關(guān)系
專題:直線與圓
分析:當(dāng)直線和半圓相切時(shí),由
|0+0-b|
2
=2,求得b的值;當(dāng)直線經(jīng)過(guò)點(diǎn)(0,2)時(shí),由0+2-b=0,求得b的值,數(shù)形結(jié)合可得滿足條件的b的范圍.
解答: 解:曲線x=
4-y2
 即 x2+y2=4 (x≥0),表示以原點(diǎn)(0,0)為圓心、半徑等于2的半圓(位于y軸或y軸右側(cè)的部分).
當(dāng)直線和半圓相切時(shí),由
|0+0-b|
2
=2,求得b=2
2
,或 b=-2
2
 (舍去).
當(dāng)直線經(jīng)過(guò)點(diǎn)(0,2)時(shí),由0+2-b=0,求得b=2,
故當(dāng)直線和半圓有2個(gè)交點(diǎn)時(shí),b的范圍為[2,2
2
),
故選:C.
點(diǎn)評(píng):本題主要考查直線和圓的位置關(guān)系,點(diǎn)到直線的距離公式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)a,b滿足a3+3a2+6a=2,b3+3b2+6b=-10,則a+b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足an-1-2an+an+1=0(n∈N*且n≥2),且a1=2,a3=4.?dāng)?shù)列{bn}的前n項(xiàng)和為Sn=2bn-1(n∈N*).
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)符號(hào)[x]表示不超過(guò)實(shí)數(shù)x的最大整數(shù),記cn=[log2(an-1)],Tn為數(shù)列{cn}的前n項(xiàng)和,求T2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

方程lnx+x=3的解所在的區(qū)間是( 。
A、(0,1)
B、(1,2)
C、(2,e)
D、(e,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線y=kx-k+1與曲線y=
1-x2
恰有兩個(gè)公共點(diǎn),則k的取值范圍( 。
A、(
1
2
,+∞)
B、(0,
1
2
]
C、(0,2]
D、k=0或k∈(-1,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-2|x|-3,則下列說(shuō)法正確的是( 。
A、f(x)是偶函數(shù),在區(qū)間(-∞,-1)上單調(diào)遞增
B、f(x)是偶函數(shù),在區(qū)間(-∞,-1)上單調(diào)遞減
C、f(x)是奇函數(shù),在區(qū)間(0,+∞)上單調(diào)遞增
D、f(x)是奇函數(shù),在區(qū)間(0,+∞)上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知指數(shù)函數(shù)y=f(x),對(duì)數(shù)函數(shù)y=g(x)和冪函數(shù)y=h(x)的圖象都過(guò)P(
1
2
,2),如果f(x1)=g(x2)=h(x3)=4,那么xl+x2+x3=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

{an}為等差數(shù)列,a1=1,公差d=2,從數(shù)列{an}中,依次選出第1,3,32…3n-1項(xiàng),組成數(shù)列{bn},則數(shù)列{bn}前n項(xiàng)之和是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,正方體ABCD-A′B′C′D′的棱長(zhǎng)為1,E,F(xiàn)分別是棱AA′,CC′的中點(diǎn),過(guò)直線E,F(xiàn)的平面分別與棱BB′,DD′交于M,N,求四棱錐C′-MENF的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案