如圖,在橢圓中,F(xiàn)1,F(xiàn)2分別為橢圓的左、右焦點(diǎn),B、D分別
為橢圓的左、右頂點(diǎn),A為橢圓在第一象限內(nèi)的一點(diǎn),直線AF1交橢圓于另
一點(diǎn)C,交y軸于點(diǎn)E,且點(diǎn)F1、F2三等分線段BD.
(1)求的值;
(2)若四邊形EBCF2為平行四邊形,求點(diǎn)C的坐標(biāo);
(3)當(dāng)時,求直線AC的方程.
(1)9(2)(3)
(1)∵F1,F(xiàn)2三等份BD, 
  ………3分
(2)由(1)知為BF2的中點(diǎn),

………2分

………1分
(3)依題意直線AC的斜率存在,

   ………1分
………1分

………1分

…1分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
設(shè)橢圓,拋物線.
(1) 若經(jīng)過的兩個焦點(diǎn),求的離心率;
(2) 設(shè),又不在軸上的兩個交點(diǎn),若的垂心為,且的重心在上,求橢圓和拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若橢圓與曲線無交點(diǎn),則橢圓的離心率的取值范圍是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知圓和圓,直線與圓相切于點(diǎn);圓的圓心在射線上,圓過原點(diǎn),且被直線截得的弦長為
(Ⅰ)求直線的方程;
(Ⅱ)求圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知橢圓過點(diǎn),長軸長為,過點(diǎn)C(-1,0)且斜率為k的直線l與橢圓相交于不同的兩點(diǎn)A、B.
(1)求橢圓的方程;
(2)若線段AB中點(diǎn)的橫坐標(biāo)是求直線l的斜率;
(3)在x軸上是否存在點(diǎn)M,使是與k無關(guān)的常數(shù)?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

求兩焦點(diǎn)的坐標(biāo)分別為(-2,0),(2,0),且經(jīng)過點(diǎn)P(2,)的橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若橢圓的兩個焦點(diǎn)和短軸兩個頂點(diǎn)是有一個內(nèi)角為的菱形的四個頂點(diǎn),則橢圓的離心率為         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題


橢圓的一焦點(diǎn)與短軸兩頂點(diǎn)組成一個等邊三角形,則橢圓的離心率為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

為橢圓上任一點(diǎn)(不是長軸頂點(diǎn)),過點(diǎn)的切線與過長軸頂點(diǎn)與長軸垂直的直線相交于點(diǎn),求證以線段為直徑的圓過這個橢圓的兩個焦點(diǎn)

查看答案和解析>>

同步練習(xí)冊答案