若橢圓與曲線無交點,則橢圓的離心率的取值范圍是
A.B.C.D.
D
易知以半焦距c為半徑的圓在橢圓內(nèi)部,故,即,選D;
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:填空題


在平面直角坐標系中,橢圓的焦距為2c,以O為圓心,為半徑作圓,若過作圓的兩條切線相互垂直,則橢圓的離心率為 ______________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的右頂點為,過的焦點且垂直長軸的弦長為1.
(Ⅰ)求橢圓的方程;
(Ⅱ)設點在拋物線上,在點處的切線與交于點.線段的中點與的中點的橫坐標相等時,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知焦點在軸上,中心在坐標原點的橢圓C的離心率為,且過點
(1)求橢圓C的方程;
(2)直線分別切橢圓C與圓(其中)于A.B兩點,求|AB|的最大值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(14分)已知橢圓C的中心在坐標原點,焦點在x軸上,離心率.直線:與橢圓C相交于兩點, 且.
(1)求橢圓C的方程;
(2)點P(,0),A、B為橢圓C上的動點,當時,求證:直線AB恒過一個定點.并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)已知橢圓C:過點,且長軸長等于4.
(Ⅰ)求橢圓C的方程;
(Ⅱ)是橢圓C的兩個焦點,⊙O是以F1F2為直徑的圓,直線l: y=kx+m與⊙O相切,并與橢圓C交于不同的兩點AB,若,求的值

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在橢圓中,F(xiàn)1,F(xiàn)2分別為橢圓的左、右焦點,B、D分別
為橢圓的左、右頂點,A為橢圓在第一象限內(nèi)的一點,直線AF1交橢圓于另
一點C,交y軸于點E,且點F1、F2三等分線段BD.
(1)求的值;
(2)若四邊形EBCF2為平行四邊形,求點C的坐標;
(3)當時,求直線AC的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的焦距是2,則m的值為                              (    )
A.6B.9C.6或4D.9或1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

10.已知分別是橢圓的上、下頂點和右焦點,直線與橢圓的右準線交于點,若直線軸,則該橢圓的離心率=    ▲   .

查看答案和解析>>

同步練習冊答案