我們把使得f(x)=0的實(shí)數(shù)x叫做函數(shù)y=f(x)的零點(diǎn).對(duì)于區(qū)間[a,b]上的連續(xù)函數(shù)y=f(x),若f(a)·f(b)<0,那么函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn).則函數(shù)f(x)=lnx+2x-6的零點(diǎn)個(gè)數(shù)為

A.0                  B.1                     C.2                     D.多于兩個(gè)

B  f(x)=lnx+2x-6的定義域?yàn)?0,+∞),

f′(x)= +2>0恒成立,所以f(x)在(0,+∞)上單調(diào)遞增.而f(1)=-4<0,f(3)=ln3>0.

∴f(x)在(0,+∞)內(nèi)僅有1個(gè)零點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

我們把使得f(x)=0的實(shí)數(shù)x叫做函數(shù)y=f(x)的零點(diǎn).對(duì)于區(qū)間[a,b]上的連續(xù)函數(shù)y=f(x),若f(a)•f(b)<0,那么函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn).則函數(shù)f(x)=lnx+2x-6的零點(diǎn)個(gè)數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007屆全國(guó)名校大聯(lián)考第一次聯(lián)考、數(shù)學(xué)舊人教 題型:044

已知函數(shù)f(x)的定義域D,且f(x)同時(shí)滿足以下條件:

f(x)在D上單調(diào)遞增或單調(diào)遞減;

②存在區(qū)間[a,b]D(其中ab,使得f(x)在區(qū)間[a,b]的值域是[ab],那么我們把函數(shù)f(x)(xD)叫做閉函數(shù).

(1)求閉函數(shù)y=-x3符合條件②的區(qū)間[a,b];

(2)判斷函數(shù)y=2x-lgx是不是閉函數(shù),若是,請(qǐng)說明理由,并找出區(qū)間[a,b];若不是,請(qǐng)說明理由;

(3)若yk是閉函數(shù),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

我們把使得f(x)=0的實(shí)數(shù)x叫做函數(shù)y=f(x)的零點(diǎn).對(duì)于區(qū)間[a,b]上的連續(xù)函數(shù)y=f(x),若f(a)•f(b)<0,那么函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn).則函數(shù)f(x)=lnx+2x-6的零點(diǎn)個(gè)數(shù)為


  1. A.
    0
  2. B.
    1
  3. C.
    2
  4. D.
    多于兩個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江西省贛南師院附中高三(上)10月月考數(shù)學(xué)試卷(實(shí)驗(yàn)班)(解析版) 題型:選擇題

我們把使得f(x)=0的實(shí)數(shù)x叫做函數(shù)y=f(x)的零點(diǎn).對(duì)于區(qū)間[a,b]上的連續(xù)函數(shù)y=f(x),若f(a)•f(b)<0,那么函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn).則函數(shù)f(x)=lnx+2x-6的零點(diǎn)個(gè)數(shù)為( )
A.0
B.1
C.2
D.多于兩個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案