精英家教網 > 高中數學 > 題目詳情

我們把使得f(x)=0的實數x叫做函數y=f(x)的零點.對于區(qū)間[a,b]上的連續(xù)函數y=f(x),若f(a)•f(b)<0,那么函數y=f(x)在區(qū)間(a,b)內有零點.則函數f(x)=lnx+2x-6的零點個數為


  1. A.
    0
  2. B.
    1
  3. C.
    2
  4. D.
    多于兩個
B
分析:求導函數,確定函數的單調性,再用零點存在定理,就可以得出結論.
解答:函數的定義域為(0,+∞)
求導函數可得:,∴f′(x)>0
∴函數為單調增函數
∵f(2)=ln2-2<0,f(3)=ln3>0
∴函數在(2,3)上存在唯一零點
故選B.
點評:函數零點的判斷,只要滿足區(qū)間[a,b]上的連續(xù)函數y=f(x),若f(a)•f(b)<0,那么函數y=f(x)在區(qū)間(a,b)內有零點.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)的定義域為(0,+∞),若y=
f(x)
x
在(0,+∞)上為增函數,則稱f(x)為“一階比增函數”;若y=
f(x)
x2
在(0,+∞)上為增函數,則稱f(x)為“二階比增函數”.我們把所有“一階比增函數”組成的集合記為Ω1,所有“二階比增函數”組成的集合記為Ω2
(Ⅰ)已知函數f(x)=x3-2hx2-hx,若f(x)∈Ω1,且f(x)∉Ω2,求實數h的取值范圍;
(Ⅱ)已知0<a<b<c,f(x)∈Ω1且f(x)的部分函數值由下表給出,
x a b c a+b+c
f(x) d d t 4
求證:d(2d+t-4)>0;
(Ⅲ)定義集合Φ={f(x)|f(x)∈Ω2,且存在常數k,使得任取x∈(0,+∞),f(x)<k},請問:是否存在常數M,使得?f(x)∈Φ,?x∈(0,+∞),有f(x)<M成立?若存在,求出M的最小值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

我們把使得f(x)=0的實數x叫做函數y=f(x)的零點.對于區(qū)間[a,b]上的連續(xù)函數y=f(x),若f(a)•f(b)<0,那么函數y=f(x)在區(qū)間(a,b)內有零點.則函數f(x)=lnx+2x-6的零點個數為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

我們把使得f(x)=0的實數x叫做函數y=f(x)的零點.對于區(qū)間[a,b]上的連續(xù)函數y=f(x),若f(a)·f(b)<0,那么函數y=f(x)在區(qū)間(a,b)內有零點.則函數f(x)=lnx+2x-6的零點個數為

A.0                  B.1                     C.2                     D.多于兩個

查看答案和解析>>

科目:高中數學 來源:2011-2012學年江西省贛南師院附中高三(上)10月月考數學試卷(實驗班)(解析版) 題型:選擇題

我們把使得f(x)=0的實數x叫做函數y=f(x)的零點.對于區(qū)間[a,b]上的連續(xù)函數y=f(x),若f(a)•f(b)<0,那么函數y=f(x)在區(qū)間(a,b)內有零點.則函數f(x)=lnx+2x-6的零點個數為( )
A.0
B.1
C.2
D.多于兩個

查看答案和解析>>

同步練習冊答案