8.命題p:?x∈N,x2≥x,則該命題的否定是?x∈N,x2<x.

分析 根據(jù)特稱命題的否定是全稱命題進(jìn)行求解即可.

解答 解:,他是特稱命題,則命題的否定是全稱命題,
即:?x∈N,x2<x,
故答案為:?x∈N,x2<x

點(diǎn)評 本題主要考查含有量詞的命題的否定,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)f(x)=$\left\{\begin{array}{l}{{x}^{2}(x≤0)}\\{cosx-1(x>0)}\end{array}\right.$,試求${∫}_{-1}^{\frac{π}{2}}$f(x)dx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若曲線C1:y=x2與曲線C2:y=aex(a>0)至少存在兩個(gè)交點(diǎn),則a的取值范圍為( 。
A.[$\frac{8}{{e}^{2}}$,+∞)B.(0,$\frac{8}{{e}^{2}}$]C.[$\frac{4}{{e}^{2}}$,+∞)D.(0,$\frac{4}{{e}^{2}}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在等差數(shù)列{an}中,a1=-2 012,其前n項(xiàng)和為Sn,若$\frac{{{S_{12}}}}{12}-\frac{{{S_{10}}}}{10}$=2,則S2012的值等于( 。
A.-2 011B.-2 012C.-2 010D.-2 013

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.若i是虛數(shù)單位,
(1)已知復(fù)數(shù)Z=$\frac{5{m}^{2}}{1-2i}$-(1+5i)m-3(2+i)是純虛數(shù),求實(shí)數(shù)m的值.
(2)如不等式m2-(m2-3m)i<(m2-4m+3)i+10成立,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)y=f(n),滿足f(0)=3,且f (n)=nf(n-1),n∈N+,則f(3)=( 。
A.6B.9C.18D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知二次函數(shù)f(x)滿足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)若函數(shù)y=f(x+m)在[-1,1]上單調(diào),求m的取值范圍;
(3)當(dāng)x∈[-1,1]時(shí),不等式f(x)>2x+m恒成立,求實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)和圓O:x2+y2=a2,F(xiàn)1(-1,0),F(xiàn)2(1,0)分別是橢圓的左、右兩焦點(diǎn),過F1且傾斜角為α$({α∈({0,\frac{π}{2}}]})$的動(dòng)直線l交橢圓C于A,B兩點(diǎn),交圓O于P,Q兩點(diǎn)(如圖所示,點(diǎn)A在x軸上方).當(dāng)α=$\frac{π}{4}$時(shí),弦PQ的長為$\sqrt{14}$. 
(1)求圓O與橢圓C的方程;
(2)若2|BF2|=|AF2|+|AB|,求直線PQ的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在平面直角坐標(biāo)系xOy中,以x軸為始邊作兩個(gè)銳角α,β,它們的終邊分別與單位圓交于A,B兩點(diǎn).已知$A(\frac{{\sqrt{5}}}{5},\;\frac{{2\sqrt{5}}}{5})\;,\;\;B(\frac{{7\sqrt{2}}}{10},\;\frac{{\sqrt{2}}}{10})$
(1)求tan(α+β)的值;
(2)求2α+β的值.

查看答案和解析>>

同步練習(xí)冊答案