分析 (1)由正弦定理化簡(jiǎn)已知等式可得$\sqrt{3}$sinC=2sinAsinC,進(jìn)而可求sinA,可得A的值.
(2)由(1)及已知可求∠A,利用余弦定理可求bc=b2+c2-12,利用三角形面積公式可求bc=8,進(jìn)而聯(lián)立解得b,c的值.
解答 (本題滿分為10分)
解:(1)∵$\sqrt{3}c=2asinC$,且sinC≠0,
∴可得$\sqrt{3}$sinC=2sinAsinC,…2分
∴sinA=$\frac{\sqrt{3}}{2}$,…3分
∴A=$\frac{π}{3}$或$\frac{2π}{3}$…4分
(2)∵∠A為銳角,可得A=$\frac{π}{3}$,…5分
∴cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{1}{2}$,可得:bc=b2+c2-12,…6分
∵S△ABC=2$\sqrt{3}$=$\frac{1}{2}$bcsinA,
∴bc=8,
∴b2+c2=20,…8分
∴$\left\{\begin{array}{l}{b=4}\\{c=2}\end{array}\right.$,或$\left\{\begin{array}{l}{c=4}\\{b=2}\end{array}\right.$…10分
點(diǎn)評(píng) 本題主要考查了正弦定理,余弦定理,三角形面積公式在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 模型1的相關(guān)指數(shù)R2為0.98 | B. | 模型2的相關(guān)指數(shù)R2為0.80 | ||
C. | 模型3的相關(guān)指數(shù)R2為0.54 | D. | 模型4的相關(guān)指數(shù)R2為0.35 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com