【題目】已知圓,線段、都是圓的弦,且垂直且相交于坐標(biāo)原點(diǎn),如圖所示,設(shè)△的面積為,設(shè)△的面積為.

1)設(shè)點(diǎn)的橫坐標(biāo)為,用表示;

2)求證:為定值;

3)用、表示出,試研究是否有最小值,如果有,求出最小值,并寫出此時(shí)直線的方程;若沒有最小值,請說明理由.

【答案】1;(2)證明見解析;(3)有,,.

【解析】

1)利用距離公式,即可用表示;

2)分類討論,計(jì)算,即可證明為定值;

3)由(2)得,同理,利用基本不等式,即可得出結(jié)論.

1)解:設(shè),,代入圓,得,

;

2)證明:設(shè),,

同理可得

,設(shè)直線的方程為,代入圓的方程得,

,

代入可得,

,直線過原點(diǎn),直線的方程為,即,代入可得,

綜上所述,為定值;

3)解:由(2)得,同理

,當(dāng)且僅當(dāng)時(shí)取等號(hào),

此時(shí),最小值為3,直線的方程為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)若,判斷函數(shù)的單調(diào)性并說明理由;

2)若,求證:關(guān)的不等式上恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某北方村莊4個(gè)草莓基地,采用水培陽光栽培方式種植的草莓個(gè)大味美,一上市便成為消費(fèi)者爭相購買的對象.光照是影響草莓生長的關(guān)鍵因素,過去50年的資料顯示,該村莊一年當(dāng)中12個(gè)月份的月光照量X(小時(shí))的頻率分布直方圖如下圖所示(注:月光照量指的是當(dāng)月陽光照射總時(shí)長).

1)求月光照量(小時(shí))的平均數(shù)和中位數(shù);

2)現(xiàn)準(zhǔn)備按照月光照量來分層抽樣,抽取一年中的4個(gè)月份來比較草莓的生長狀況,問:應(yīng)在月光照量,,的區(qū)間內(nèi)各抽取多少個(gè)月份?

3)假設(shè)每年中最熱的5,6,7,8,9,10月的月光照量是大于等于240小時(shí),且6,7,8月的月光照量是大于等于320小時(shí),那么,從該村莊2018年的5,67,8,9106個(gè)月份之中隨機(jī)抽取2個(gè)月份的月光照量進(jìn)行調(diào)查,求抽取到的2個(gè)月份的月光照量(小時(shí))都不低于320的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在高為2的梯形ABCD中,ABCD,AB2CD5,過AB分別作AECD,BFCD,垂足分別為E,F.已知DE1,將梯形ABCD沿AE,BF同側(cè)折起,得空間幾何體ADEBCF,如圖2.DECFCD,在線段AB上是否存在點(diǎn)P,使得CP與平面ACD所成角的正弦值為?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐SABCD的底面是正方形,SD⊥平面ABCD,SDADa,點(diǎn)ESD上的點(diǎn),且DEa(0<≦1). w.w.w..c.o.m

(Ⅰ)求證:對任意的0、1),都有AC⊥BE:

(Ⅱ)若二面角C-AE-D的大小為600C,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l與拋物線Cy24x交于A,B兩點(diǎn),M(2,y0)(y0≠0)為弦AB的中點(diǎn),過MAB的垂線交x軸于點(diǎn)P

1)求點(diǎn)P的坐標(biāo);

2)當(dāng)弦AB最長時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù))在點(diǎn)的切線方程為.

1)求實(shí)數(shù)的值;

2)若關(guān)于的不等式對于任意恒成立,求整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】同學(xué)們有沒有讀過莎士比亞的名劇《威尼斯商人》?數(shù)學(xué)家斯摩林在劇中增加了一個(gè)情節(jié):安東尼奧到鮑西婭家向她求婚,鮑西婭拿出一金、一銀、一鋁三個(gè)盒子,說:“每只盒子上寫了一句話,但只有一句是真的.誰能猜中我的肖象在哪只盒子中,才能做我的丈夫”.如果你是聰明、政治的安東尼奧,請問肖象在哪個(gè)盒子內(nèi)?(請從金盒、銀盒、鋁盒中選擇一個(gè)填在橫線上)________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)若當(dāng)時(shí),取得極值,求的值,并求的單調(diào)區(qū)間.

(2)存在兩個(gè)極值點(diǎn),求的取值范圍,并證明:.

查看答案和解析>>

同步練習(xí)冊答案