【題目】某北方村莊4個草莓基地,采用水培陽光栽培方式種植的草莓個大味美,一上市便成為消費(fèi)者爭相購買的對象.光照是影響草莓生長的關(guān)鍵因素,過去50年的資料顯示,該村莊一年當(dāng)中12個月份的月光照量X(小時)的頻率分布直方圖如下圖所示(注:月光照量指的是當(dāng)月陽光照射總時長).
(1)求月光照量(小時)的平均數(shù)和中位數(shù);
(2)現(xiàn)準(zhǔn)備按照月光照量來分層抽樣,抽取一年中的4個月份來比較草莓的生長狀況,問:應(yīng)在月光照量,,的區(qū)間內(nèi)各抽取多少個月份?
(3)假設(shè)每年中最熱的5,6,7,8,9,10月的月光照量是大于等于240小時,且6,7,8月的月光照量是大于等于320小時,那么,從該村莊2018年的5,6,7,8,9,10這6個月份之中隨機(jī)抽取2個月份的月光照量進(jìn)行調(diào)查,求抽取到的2個月份的月光照量(小時)都不低于320的概率.
【答案】(1)平均數(shù)為(小時);中位數(shù)為240(小時)(2)(3)
【解析】
(1)利用各頻率之和為1,計算出,然后根據(jù)頻率分布直方圖以及平均數(shù),中位數(shù)的求法,可得結(jié)果.
(2)根據(jù)月光照量、、的頻率之比為,結(jié)合分層抽樣的方法,可得結(jié)果.
(3)采用列舉法,將“6個月份之中隨機(jī)抽取2個月份”所有情況列舉出來,并計算“抽取到的2個月份的月光照量(小時)都不低于320”的個數(shù),結(jié)合古典概型可得結(jié)果.
(1)根據(jù)各頻率之和為1,
則,
解得.
月光照量(小時)的平均數(shù)為
所以(小時)
設(shè)月光照量(小時)的中位數(shù)為,
則.根據(jù)中位數(shù)的定義,
其左右兩邊的頻率相等,都為0.5,可得
,
解得.
所以月光照量(小時)的中位數(shù)為240(小時).
(2)因?yàn)樵鹿庹樟?/span>、、
的頻率之比為,
所以若準(zhǔn)備按照月光照量來分層抽樣,
抽取一年中的4個月份來比較草莓的生長狀況,
那么,抽取的月光照量,,
的月份數(shù)分別為
.
(3)由題意,
月光照量的有5,9,10月,
月光照量的有6,7,8月,
故從該村莊2018年的5,6,7,8,9,10月份
之中隨機(jī)抽取2個月份的月光照量(小時)
進(jìn)行調(diào)查,所有的情況有:
;
;
;
;
共15種;
其中,抽取到的2個月份的月光照量
(小時)都不低于320的情況有:
共3種;
故所抽取到的2個月份的月光照量
(小時)都不低于320的概率.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù),,.
(1)設(shè),假設(shè)在上遞減,求的取值范圍;
(2)假設(shè),求證:.
(3)是否存在實(shí)數(shù),使得恒成立,假設(shè)存在,求出的取值范圍,假設(shè)不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸的建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程;
(2)若點(diǎn)與點(diǎn)分別為曲線動點(diǎn),求的最小值,并求此時的點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】博覽會安排了分別標(biāo)有序號為“1號”“2號”“3號”的三輛車,等可能隨機(jī)順序前往酒店接嘉賓.某嘉賓突發(fā)奇想,設(shè)計兩種乘車方案.方案一:不乘坐第一輛車,若第二輛車的車序號大于第一輛車的車序號,就乘坐此車,否則乘坐第三輛車;方案二:直接乘坐第一輛車.記方案一與方案二坐到“3號”車的概率分別為P1,P2,則( )
A. P1P2= B. P1=P2= C. P1+P2= D. P1<P2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(1)若,討論的單調(diào)性;
(2)若在區(qū)間內(nèi)有兩個極值點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了減輕家庭困難的高中學(xué)生的經(jīng)濟(jì)負(fù)擔(dān),讓更多的孩子接受良好的教育,國家施行高中生國家助學(xué)金政策,普通高中國家助學(xué)金平均資助標(biāo)準(zhǔn)為每生每年1500元,具體標(biāo)準(zhǔn)由各地結(jié)合實(shí)際在1000元至3000元范圍內(nèi)確定,可以分為兩或三檔.各學(xué)校積極響應(yīng)政府號召,通過各種形式宣傳國家助學(xué)金政策.為了解某高中學(xué)校對國家助學(xué)金政策的宣傳情況,擬采用隨機(jī)抽樣的方法抽取部分學(xué)生進(jìn)行采訪調(diào)查.
(1)若該高中學(xué)校有2000名在校學(xué)生,編號分別為0001,0002,0003,…,2000,請用系統(tǒng)抽樣的方法,設(shè)計一個從這2000名學(xué)生中抽取50名學(xué)生的方案.(寫出必要的步驟)
(2)該校根據(jù)助學(xué)金政策將助學(xué)金分為3檔,1檔每年3000元,2檔每年2000元,3檔每年1000元,某班級共評定出3個1檔,2個2檔,1個3檔,若從該班獲得助學(xué)金的學(xué)生中選出2名寫感想,求這2名同學(xué)不在同一檔的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知分別為橢圓的左、右焦點(diǎn),為該橢圓的一條垂直于軸的動弦,直線與軸交于點(diǎn),直線與直線的交點(diǎn)為.
(1)證明:點(diǎn)恒在橢圓上.
(2)設(shè)直線與橢圓只有一個公共點(diǎn),直線與直線相交于點(diǎn),在平面內(nèi)是否存在定點(diǎn),使得恒成立?若存在,求出該點(diǎn)坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,線段、都是圓的弦,且與垂直且相交于坐標(biāo)原點(diǎn),如圖所示,設(shè)△的面積為,設(shè)△的面積為.
(1)設(shè)點(diǎn)的橫坐標(biāo)為,用表示;
(2)求證:為定值;
(3)用、、、表示出,試研究是否有最小值,如果有,求出最小值,并寫出此時直線的方程;若沒有最小值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱長為3的正方體ABCDA1B1C1D1中,A1E=CF=1.
(1)求異面直線AC1與D1E所成角的余弦值;
(2)求直線AC1與平面BED1F所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com