【題目】在△ABC中,角A,B,C所對的邊分別是a,b,c,且
(1)證明:sinAsinB=sinC;
(2)若 ,求tanB.

【答案】
(1)

證明:在△ABC中,∵

∴由正弦定理得: ,

= =1,

∵sin(A+B)=sinC.

∴整理可得:sinAsinB=sinC


(2)

解: ,由余弦定理可得cosA=

sinA= , =

+ = =1, = ,

tanB=4


【解析】(Ⅰ)將已知等式通分后利用兩角和的正弦函數(shù)公式整理,利用正弦定理,即可證明.(2)由余弦定理求出A的余弦函數(shù)值,利用(Ⅰ)的條件,求解B的正切函數(shù)值即可;本題主要考查了正弦定理,余弦定理,兩角和的正弦函數(shù)公式,三角形內(nèi)角和定理,三角形面積公式的應(yīng)用,考查了轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 的零點(diǎn), 圖像的對稱軸,且 單調(diào),則 的最大值為( 。
A.11
B.9
C.7
D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.

(1)求證:DC⊥平面PAC;
(2)求證:平面PAB⊥平面PAC;
(3)設(shè)點(diǎn)E為AB的中點(diǎn),在棱PB上是否存在點(diǎn)F,使得PA∥平面CEF?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的序號是__________________.(寫出所有正確的序號)

正切函數(shù)在定義域內(nèi)是增函數(shù);

已知函數(shù)的最小正周期為,的圖象向右平移個單位長度,所得圖象關(guān)于軸對稱,的一個值可以是;

,三點(diǎn)共線;④函數(shù)的最小值為

函數(shù)上是增函數(shù),的取值范圍是.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD與ADEF為平行四邊形,M,N,G分別是AB,AD,EF的中點(diǎn)求證:

1BE平面DMF;

2平面BDE平面MNG

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=2,a2為整數(shù),且a3∈[3,5].

(1)求{an}的通項(xiàng)公式;

(2)設(shè),求數(shù)列{bn}的前n項(xiàng)和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=log4(22x+1)+mx的圖象經(jīng)過點(diǎn) .

(Ⅰ)求m值并判斷的奇偶性;

(Ⅱ)設(shè)gx)=log4(2x+x+afx),若關(guān)于x的方程fx)=gx)在x∈[-2,2]上有且只有一個解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為定義在 上的奇函數(shù),當(dāng)時,函數(shù)解析式為.

)求的值,并求出上的解析式;

)求上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊三角形ABC的中線AF與中位線DE相交于G,已知AEDAEDDE旋轉(zhuǎn)過程中的一個圖形,給出以下四個命題:①AC平面ADF;②平面AGF平面BCED;③動點(diǎn)A′在平面ABC上的射影在線段AF上;④異面直線AEBD不可能垂直.其中正確命題的個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習(xí)冊答案