已知函數(shù)f(x)是定義在R上的奇函數(shù),當x<0時,f(x)=ex(x+1),給出下列命題:
①當x>0時,f(x)=ex(1-x);②函數(shù)f(x)有兩個零點;③f(x)>0的解集為(-1,0)∪(1,+∞);④?x1,x2∈R,都有|f(x1)-f(x2)|<2.
其中正確命題的個數(shù)是( )
A.1 B.2
C.3 D.4
科目:高中數(shù)學 來源:2013-2014學年(安徽專用)高考數(shù)學(文)專題階段評估模擬卷4練習卷(解析版) 題型:解答題
如圖,已知四棱錐P-ABCD的底面為直角梯形,AB∥CD,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=AB=1,M是PB的中點.
(1)求證:AM=CM;
(2)若N是PC的中點,求證:DN∥平面AMC.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年(安徽專用)高考數(shù)學(文)專題階段評估模擬卷2練習卷(解析版) 題型:解答題
已知△ABC的內角為A、B、C,其對邊分別為a、b、c,B為銳角,向量m=(2sin B,-),n=,且m∥n
(1)求角B的大;
(2)如果b=2,求S△ABC的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年(安徽專用)高考數(shù)學(文)專題階段評估模擬卷1練習卷(解析版) 題型:解答題
已知函數(shù)f(x)=ax2-ln x,x∈(0,e],其中e是自然對數(shù)的底數(shù),a∈R.
(1)當a=1時,求函數(shù)f(x)的單調區(qū)間與極值;
(2)是否存在實數(shù)a,使f(x)的最小值是3?若存在,求出a的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年(安徽專用)高考數(shù)學(文)專題階段評估模擬卷1練習卷(解析版) 題型:填空題
已知集合A、B,定義集合A與B的一種運算A⊕B,其結果如下表所示:
A | {1,2,3,4} | {-1,1} | {-4,8} | {-1,0,1} |
B | {2,3,6} | {-1,1} | {-4,-2,0,2} | {-2,-1,0,1} |
A⊕B | {1,4,6} | ∅ | {-2,0,2,8} | {-2} |
按照上述定義,若M={-2 011,0,2 012},N={-2 012,0,2 013},則M⊕N=________.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年(安徽專用)高考數(shù)學(文)專題階段評估模擬卷1練習卷(解析版) 題型:選擇題
若a,b∈R,且ab>0,則下列不等式中,恒成立的是( )
A.a+b≥2 B.>
C.≥2 D.a2+b2>2ab
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學(文)三輪專題體系通關訓練解答題押題練D組練習卷(解析版) 題型:解答題
如圖,某園林單位準備綠化一塊直徑為BC的半圓形空地,△ABC外的地方種草,△ABC的內接正方形PQRS為一水池,其余的地方種花,若BC=a,∠ABC=θ,設△ABC的面積為S1,正方形的PQRS面積為S2.
(1)用a,θ表示S1和S2;
(2)當a固定,θ變化時,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學(文)三輪專題體系通關訓練解答題押題練A組練習卷(解析版) 題型:解答題
如圖,已知橢圓C:+y2=1,A、B是四條直線x=±2,y=±1所圍成的兩個頂點.
(1)設P是橢圓C上任意一點,若=m+n,求證:動點Q(m,n)在定圓上運動,并求出定圓的方程;
(2)若M、N是橢圓C上兩上動點,且直線OM、ON的斜率之積等于直線OA、OB的斜率之積,試探求△OMN的面積是否為定值,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學(文)三輪專題體系通關訓練填空題押題練D組練習卷(解析版) 題型:填空題
設a=2 0110.1,b=ln,c=log,則a,b,c的大小關系是________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com