已知函數(shù)f(x)=ax2-ln x,x∈(0,e],其中e是自然對(duì)數(shù)的底數(shù),a∈R.
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間與極值;
(2)是否存在實(shí)數(shù)a,使f(x)的最小值是3?若存在,求出a的值;若不存在,說(shuō)明理由.
(1)f(x)的單調(diào)增區(qū)間是,單調(diào)減區(qū)間為,極小值為+ln 2.無(wú)極大值(2)a=
【解析】(1)∵f(x)=x2-ln x,f′(x)=2x-=,x∈(0,e],
令f′(x)>0,得<x<e,
f′(x)<0,得0<x<,
∴f(x)的單調(diào)增區(qū)間是,單調(diào)減區(qū)間為.
∴f(x)的極小值為f =-ln =+ln 2.無(wú)極大值.
(2)假設(shè)存在實(shí)數(shù)a,使f(x)=ax2-ln x,x∈(0,e]有最小值3,
f′(x)=2ax-=.
①當(dāng)a≤0時(shí),x∈(0,e],所以f′(x)<0,所以f(x)在(0,e]上單調(diào)遞減,
∴f(x)min=f(e)=ae2-1=3,a= (舍去).
②當(dāng)a>0時(shí),令f′(x)=0,得x= ,
(ⅰ)當(dāng)0< <e,即a>時(shí),
f(x)在上單調(diào)遞減,在上單調(diào)遞增,
∴f(x)min=f=-ln=3,得a=.
(ⅱ)當(dāng)≥e,即0<a≤時(shí),x∈(0,e]時(shí),f′(x)<0,
所以f(x)在(0,e]上單調(diào)遞減,
∴f(x)min=f(e)=ae2-1=3,a=(舍去),此時(shí)f(x)無(wú)最小值.
綜上,存在實(shí)數(shù)a=,使得當(dāng)x∈(0,e]時(shí),f(x)有最小值3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年(安徽專(zhuān)用)高考數(shù)學(xué)(文)專(zhuān)題階段評(píng)估模擬卷5練習(xí)卷(解析版) 題型:選擇題
已知橢圓E:=1(a>b>0)的右焦點(diǎn)為F(3,0),過(guò)點(diǎn)F的直線(xiàn)交E于A,B兩點(diǎn).若AB的中點(diǎn)坐標(biāo)為(1,-1),則E的方程為( )
A. =1 B.=1 C.=1 D.=1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年(安徽專(zhuān)用)高考數(shù)學(xué)(文)專(zhuān)題階段評(píng)估模擬卷3練習(xí)卷(解析版) 題型:選擇題
執(zhí)行下面的程序框圖,如果輸入的t∈[-1,3],則輸出的s屬于( )
A.[-3,4] B.[-5,2] C.[-4,3] D.[-2,5]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年(安徽專(zhuān)用)高考數(shù)學(xué)(文)專(zhuān)題階段評(píng)估模擬卷2練習(xí)卷(解析版) 題型:填空題
已知向量a與b的夾角是,且|a|=1,|b|=4,若(2a+λb)⊥a,則實(shí)數(shù)λ=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年(安徽專(zhuān)用)高考數(shù)學(xué)(文)專(zhuān)題階段評(píng)估模擬卷2練習(xí)卷(解析版) 題型:選擇題
已知向量a、b的夾角為45°,且|a|=1,|2a-b|=,則|b|=( )
A.3 B.2 C. D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年(安徽專(zhuān)用)高考數(shù)學(xué)(文)專(zhuān)題階段評(píng)估模擬卷1練習(xí)卷(解析版) 題型:解答題
設(shè)定義在(0,+∞)上的函數(shù)f(x)=ax++b(a>0).
(1)求f(x)的最小值;
(2)若曲線(xiàn)y=f(x)在點(diǎn)(1,f(1))處的切線(xiàn)方程為y=x,求a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年(安徽專(zhuān)用)高考數(shù)學(xué)(文)專(zhuān)題階段評(píng)估模擬卷1練習(xí)卷(解析版) 題型:選擇題
已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x<0時(shí),f(x)=ex(x+1),給出下列命題:
①當(dāng)x>0時(shí),f(x)=ex(1-x);②函數(shù)f(x)有兩個(gè)零點(diǎn);③f(x)>0的解集為(-1,0)∪(1,+∞);④?x1,x2∈R,都有|f(x1)-f(x2)|<2.
其中正確命題的個(gè)數(shù)是( )
A.1 B.2
C.3 D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)(文)三輪專(zhuān)題體系通關(guān)訓(xùn)練解答題押題練C組練習(xí)卷(解析版) 題型:解答題
已知橢圓C:=1(a>b>0)上任一點(diǎn)P到兩個(gè)焦點(diǎn)的距離的和為2,P與橢圓長(zhǎng)軸兩頂點(diǎn)連線(xiàn)的斜率之積為-.設(shè)直線(xiàn)l過(guò)橢圓C的右焦點(diǎn)F,交橢圓C于兩點(diǎn)A(x1,y1),B(x2,y2).
(1)若= (O為坐標(biāo)原點(diǎn)),求|y1-y2|的值;
(2)當(dāng)直線(xiàn)l與兩坐標(biāo)軸都不垂直時(shí),在x軸上是否總存在點(diǎn)Q,使得直線(xiàn)QA,QB的傾斜角互為補(bǔ)角?若存在,求出點(diǎn)Q坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)(文)三輪專(zhuān)題體系通關(guān)訓(xùn)練填空題押題練E組練習(xí)卷(解析版) 題型:填空題
若以連續(xù)拋擲兩次骰子分別得到的點(diǎn)數(shù)m、n作為點(diǎn)P的坐標(biāo),則點(diǎn)P落在圓x2+y2=16內(nèi)的概率為________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com