已知橢圓C:=1(a>b>0)上任一點P到兩個焦點的距離的和為2,P與橢圓長軸兩頂點連線的斜率之積為-.設直線l過橢圓C的右焦點F,交橢圓C于兩點A(x1,y1),B(x2,y2).
(1)若= (O為坐標原點),求|y1-y2|的值;
(2)當直線l與兩坐標軸都不垂直時,在x軸上是否總存在點Q,使得直線QA,QB的傾斜角互為補角?若存在,求出點Q坐標;若不存在,請說明理由.
(1)4(2)存在Q(3,0)
【解析】(1)由橢圓的定義知a=,設P(x,y),
則有,則=-,
又點P在橢圓上,則=-,
∴b2=2,
∴橢圓C的方程是=1.(3分)
∵=,
∴|cos∠AOB=,
∴|sin∠AOB=4,
∴S△AOB=|sin∠AOB=2,
又S△AOB=|y1-y2|×1,故|y1-y2|=4.(7分)
(2)假設存在一點Q(m,0),使得直線QA,QB的傾斜角互為補角,
依題意可知直線l斜率存在且不為零,
直線l的方程為y=k(x-1)(k≠0),
由消去y得(3k2+2)x2-6k2x+3k2-6=0,(9分)
設A(x1,y1),B(x2,y2),則x1+x2=,x1·x2=.
∵直線QA,QB的傾斜角互為補角,
∴kQA+kQB=0,即=0,(13分)
又y1=k(x1-1),y2=k(x2-1),
代入上式可得2x1x2+2m-(m+1)(x1+x2)=0,
∴2×+2m-(m+1)×=0,即2m-6=0,∴m=3,
∴存在Q(3,0)使得直線QA,QB的傾斜角互為補角.(16分)
科目:高中數(shù)學 來源:2013-2014學年(安徽專用)高考數(shù)學(文)專題階段評估模擬卷3練習卷(解析版) 題型:解答題
已知數(shù)列{2n-1·an}的前n項和Sn=1-.
(1)求數(shù)列{an}的通項公式;
(2)設bn=,求數(shù)列的前n項和.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年(安徽專用)高考數(shù)學(文)專題階段評估模擬卷1練習卷(解析版) 題型:解答題
已知函數(shù)f(x)=ax2-ln x,x∈(0,e],其中e是自然對數(shù)的底數(shù),a∈R.
(1)當a=1時,求函數(shù)f(x)的單調(diào)區(qū)間與極值;
(2)是否存在實數(shù)a,使f(x)的最小值是3?若存在,求出a的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年(安徽專用)高考數(shù)學(文)專題階段評估模擬卷1練習卷(解析版) 題型:選擇題
若a,b∈R,且ab>0,則下列不等式中,恒成立的是( )
A.a+b≥2 B.>
C.≥2 D.a2+b2>2ab
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學(文)三輪專題體系通關(guān)訓練解答題押題練D組練習卷(解析版) 題型:解答題
如圖,某園林單位準備綠化一塊直徑為BC的半圓形空地,△ABC外的地方種草,△ABC的內(nèi)接正方形PQRS為一水池,其余的地方種花,若BC=a,∠ABC=θ,設△ABC的面積為S1,正方形的PQRS面積為S2.
(1)用a,θ表示S1和S2;
(2)當a固定,θ變化時,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學(文)三輪專題體系通關(guān)訓練解答題押題練B組練習卷(解析版) 題型:解答題
已知函數(shù)f(x)=-x3+x2,g(x)=aln x,a∈R.
(1)若對任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,求a的取值范圍;
(2)設F(x)=若P是曲線y=F(x)上異于原點O的任意一點,在曲線y=F(x)上總存在另一點Q,使得△POQ中的∠POQ為鈍角,且PQ的中點在y軸上,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學(文)三輪專題體系通關(guān)訓練解答題押題練A組練習卷(解析版) 題型:解答題
如圖,已知橢圓C:+y2=1,A、B是四條直線x=±2,y=±1所圍成的兩個頂點.
(1)設P是橢圓C上任意一點,若=m+n,求證:動點Q(m,n)在定圓上運動,并求出定圓的方程;
(2)若M、N是橢圓C上兩上動點,且直線OM、ON的斜率之積等于直線OA、OB的斜率之積,試探求△OMN的面積是否為定值,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學(文)三輪專題體系通關(guān)訓練填空題押題練F組練習卷(解析版) 題型:填空題
已知集合M={1,2,3},N={2,3,4},則M∩N=________.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學(文)三輪專題體系通關(guān)訓練填空題押題練C組練習卷(解析版) 題型:填空題
復數(shù)(1+2i)2的共軛復數(shù)是________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com