11.設(shè)拋物線C:y2=4x的焦點為F,直線l過F且與C交于A,B兩點.若|AF|=3|BF|,則l的斜率為±$\sqrt{3}$.

分析 由題意設(shè)出直線AB的方程,聯(lián)立直線和拋物線方程,求出A,B的橫坐標(biāo),由|AF|=3|BF|得到x1=3x2+2,代入A,B的坐標(biāo)得答案.

解答 解:由y2=4x,得F(1,0),
設(shè)AB所在直線方程為y=k(x-1),
聯(lián)立y2=4x,得k2x2-(2k2+4)x+k2=0.
設(shè)A(x1,y1),B(x2,y2),
結(jié)合|AF|=3|BF|,
解方程得:x1=$\frac{{k}^{2}+2}{{k}^{2}}$+$\frac{2\sqrt{{k}^{2}+1}}{{k}^{2}}$,x2=$\frac{{k}^{2}+2}{{k}^{2}}$-$\frac{2\sqrt{{k}^{2}+1}}{{k}^{2}}$.
再由|AF|=3|BF|,
得x1+1=3(x2+1),即
x1=3x2+2,
∴$\frac{{k}^{2}+2}{{k}^{2}}$+$\frac{2\sqrt{{k}^{2}+1}}{{k}^{2}}$=3($\frac{{k}^{2}+2}{{k}^{2}}$-$\frac{2\sqrt{{k}^{2}+1}}{{k}^{2}}$)+2,
解得:k=±$\sqrt{3}$.
故答案為:±$\sqrt{3}$.

點評 本題考查了拋物線的簡單幾何性質(zhì),考查了拋物線的定義,考查了學(xué)生的計算能力,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列命題中正確的是(  )
A.任意兩個復(fù)數(shù)均不能比較大小
B.復(fù)數(shù)z為實數(shù)的充要條件是$z=\overline z$
C.復(fù)數(shù)z=3+2i在復(fù)平面上對應(yīng)的點在第二象限
D.復(fù)數(shù)i+3的共軛復(fù)數(shù)為i-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.命題p:$f(x)=\frac{2}{x-m}$在區(qū)間(-7,+∞)是減函數(shù),命題q:不等式${m^2}+5m-3≥\sqrt{{a^2}+8}$對任意的實數(shù)a∈[-1,1]恒成立.若(?p)∧q為真命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某市在“國際禁毒日”期間,連續(xù)若干天發(fā)布了“珍愛生命,遠(yuǎn)離毒品”的電視公益廣告,期望讓更多的市民知道毒品的危害性.禁毒志愿者為了了解這則廣告的宣傳效果,隨機抽取了100名年齡階段在[10,20),[20,30),[30,40),[40,50),[50,60)的市民進行問卷調(diào)查,由此得到樣本頻率分布直方圖如圖所示.
(1)求隨機抽取的市民中年齡段在[30,40)的人數(shù);
(2)從不小于40歲的人中按年齡段分層抽樣的方法隨機抽取5人,求[50,60)年齡段抽取的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=asin3x+bx3+4(a∈R,b∈R),f′(x)為f(x)的導(dǎo)函數(shù),則f(2014)+f(-2014)+f′(2015)-f′(-2015)=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若$f(x)=\sqrt{3}{cos^2}kx-sinkxcoskx(k>0)$的圖象與直線y=m(m>0)相切,并且切點橫坐標(biāo)依次成公差為π的等差數(shù)列,則k=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)y=sinx+excosx的導(dǎo)數(shù)為(  )
A.y′=(1+ex)cosx+exsinxB.y′=cosx+exsinx
C.y′=(1+ex)cosx-exsinxD.y′=cosx-exsinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)f(x)=2cos(x-$\frac{π}{3}$)的單調(diào)遞增區(qū)間是( 。
A.[2kπ+$\frac{π}{3}$,2kπ+$\frac{4π}{3}$](k∈Z)B.[2kπ-$\frac{π}{3}$,2kπ+$\frac{2π}{3}$](k∈Z)
C.[2kπ-$\frac{2π}{3}$,2kπ+$\frac{π}{3}$](k∈Z)D.[2kπ-$\frac{2π}{3}$,2kπ+$\frac{4π}{3}$](k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知極坐標(biāo)系的極點在直角坐標(biāo)系的原點,極軸與x軸的正半軸重合.曲線C的極坐標(biāo)方程為ρ2cos2θ+3ρ2sin2θ=3,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=-\sqrt{3}t\\ y=1+t\end{array}\right.$(t為參數(shù),t∈R),
(1)寫出曲線C的直角坐標(biāo)方程和直線l的普通方程;
(2)試求曲線C上的點到直線l的距離的最大值.

查看答案和解析>>

同步練習(xí)冊答案