已知各項(xiàng)均為正數(shù)的數(shù)列滿足,且,其中.

(Ⅰ)求數(shù)列的通項(xiàng)公式;

(Ⅱ)設(shè)數(shù)列滿足是否存在正整數(shù)m、n(1<m<n),使得成等比數(shù)列?若存在,求出所有的m、n的值,若不存在,請(qǐng)說明理由。

 

【答案】

(Ⅰ)數(shù)列的通項(xiàng)公式為;(Ⅱ)存在,,

【解析】

試題分析:(Ⅰ)求數(shù)列的通項(xiàng)公式,首先須知道數(shù)列的特征,由題意可得,,由于各項(xiàng)均為正數(shù),故有即,這樣得到數(shù)列是公比為的等比數(shù)列,由可求出,從而可得數(shù)列的通項(xiàng)公式;(Ⅱ)設(shè)數(shù)列滿足是否存在正整數(shù),使得成等比數(shù)列,首先求出數(shù)列的通項(xiàng)公式,,然后假設(shè)存在正整數(shù),使得成等比數(shù)列,則,整理可得,只要即可,解不等式求出的范圍,看是否有正整數(shù),從而的結(jié)論.

試題解析:(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014032506491907366350/SYS201403250650528257971025_DA.files/image024.png">即

所以有即

所以數(shù)列是公比為的等比數(shù)列

解得。

從而,數(shù)列的通項(xiàng)公式為。        6分

(II)=,若成等比數(shù)列,則

,可得,

所以,解得:

,且,所以,此時(shí)

故當(dāng)且僅當(dāng),使得成等比數(shù)列。        13分

考點(diǎn):等比數(shù)列的定義,及通項(xiàng)公式,探索性命題.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求數(shù){an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù){bn}的前n項(xiàng)和Tn,令bn=an2,其中n∈N*,試比較
Tn+1+12
4Tn
2log2bn+1+2
2log2bn-1
的大小,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求數(shù){an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù){bn}的前n項(xiàng)和Tn,令bn=an2,其中n∈N*,試比較數(shù)學(xué)公式數(shù)學(xué)公式的大小,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:青島二模 題型:解答題

已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求數(shù){an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù){bn}的前n項(xiàng)和Tn,令bn=an2,其中n∈N*,試比較
Tn+1+12
4Tn
2log2bn+1+2
2log2bn-1
的大小,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:《第2章 數(shù)列》、《第3章 不等式》2010年單元測(cè)試卷(陳經(jīng)綸中學(xué))(解析版) 題型:解答題

已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求數(shù){an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù){bn}的前n項(xiàng)和Tn,令bn=an2,其中n∈N*,試比較的大小,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年高考復(fù)習(xí)方案配套課標(biāo)版月考數(shù)學(xué)試卷(二)(解析版) 題型:解答題

已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求數(shù){an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù){bn}的前n項(xiàng)和Tn,令bn=an2,其中n∈N*,試比較的大小,并加以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案