13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-(x+1)^{2}+1,x<0}\\{{2}^{x}-1,x≥0}\end{array}\right.$,若函數(shù)g(x)=f(x)-a有三個零點,則實數(shù)a的取值范圍是(  )
A.(0,1)B.[0,1)C.(0,1]D.[0,1]

分析 由g(x)=f(x)-a有三個零點可得f(x)=a有三個零點,即y=f(x)與y=a的圖象有san個交點,則函數(shù)在定義域內(nèi)不能是單調(diào)函數(shù),結(jié)合函數(shù)圖象可求a的范圍.

解答 解:∵g(x)=f(x)-a有三個零點,
∴f(x)=a有三個零點,即y=f(x)與y=a的圖象有三個交點,
由于函數(shù)f(x)=$\left\{\begin{array}{l}{-(x+1)^{2}+1,x<0}\\{{2}^{x}-1,x≥0}\end{array}\right.$的圖象如圖:
函數(shù)g(x)=f(x)-a有三個零點,f(x)=-(x+1)2+1≤1.
可得0<a<1.
故選:A.

點評 本題考查函數(shù)的零點問題,滲透了轉(zhuǎn)化思想,數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)$f(x)=\frac{a+blnx}{x+1}$在點(1,f(1))處的切線方程為x+y=2.
(Ⅰ)求a,b的值;
(Ⅱ)若對函數(shù)f(x)定義域內(nèi)的任一個實數(shù)x,都有xf(x)<m恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若函數(shù)y=ax+b的部分圖象如圖所示,則( 。
A.0<a<1,-1<b<0B.0<a<1,0<b<1C.1<a,-1<b<0D.1<a,0<b<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的焦距為10,一條漸近線為y=$\frac{1}{2}$x,則該雙曲線的方程為( 。
A.$\frac{{x}^{2}}{20}-\frac{{y}^{2}}{5}$=1B.$\frac{{x}^{2}}{5}-\frac{{y}^{2}}{20}$=1C.$\frac{{x}^{2}}{80}-\frac{{y}^{2}}{20}$=1D.$\frac{{x}^{2}}{20}-\frac{{y}^{2}}{80}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.一個幾何體的三視圖如圖所示,則這個幾何體的體積等于( 。
A.6B.12C.18D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=1,|$\overrightarrow$|=6,且$\overrightarrow{a}$•($\overrightarrow-\overrightarrow{a}$)=2,則$\overrightarrow{a}•\overrightarrow$的值為3,$\overrightarrow{a}$與$\overrightarrow$的夾角是$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若sinα=$\frac{4}{5}$,且α為銳角,則tanα的值等于( 。
A.$\frac{4}{3}$B.-$\frac{3}{4}$C.$\frac{3}{4}$D.-$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若直線l1:(m-2)x-y-1=0,與直線l2:3x-my=0互相平行,則m的值等于( 。
A.0或-1或3B.0或3C.0或-1D.-1或3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的離心率等于( 。
A.$\frac{4}{5}$B.$\frac{3}{5}$C.$\frac{3}{4}$D.$\frac{4}{3}$

查看答案和解析>>

同步練習(xí)冊答案