18.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=1,|$\overrightarrow$|=6,且$\overrightarrow{a}$•($\overrightarrow-\overrightarrow{a}$)=2,則$\overrightarrow{a}•\overrightarrow$的值為3,$\overrightarrow{a}$與$\overrightarrow$的夾角是$\frac{π}{3}$.

分析 由已知展開向量等式可得$\overrightarrow{a}•\overrightarrow$的值;再由數(shù)量積公式求得$\overrightarrow{a}$與$\overrightarrow$的夾角.

解答 解:由|$\overrightarrow{a}$|=1,|$\overrightarrow$|=6,且$\overrightarrow{a}$•($\overrightarrow-\overrightarrow{a}$)=2,
得$\overrightarrow{a}•\overrightarrow-|\overrightarrow{a}{|}^{2}=2$,即$\overrightarrow{a}•\overrightarrow-1=2$,∴$\overrightarrow{a}•\overrightarrow=3$;
設(shè)$\overrightarrow{a}$與$\overrightarrow$的夾角是θ,則cosθ=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}||\overrightarrow|}=\frac{3}{1×6}=\frac{1}{2}$,
∴$θ=\frac{π}{3}$.
故答案為:3;$\frac{π}{3}$.

點(diǎn)評(píng) 本題考查平面向量的數(shù)量積運(yùn)算,考查由數(shù)量積求向量的夾角,是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知a>0,b>0,若不等式$\frac{m}{2a+b}-\frac{2}{a}-\frac{1}≤0$恒成立,則m的最大值為(  )
A.4B.16C.9D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.函數(shù)f(x)的定義域?yàn)镈,若存在閉區(qū)間[m,n]⊆D,使得函數(shù)f(x)滿足以下兩個(gè)條件:
(1)f(x)在[m,n]上是單調(diào)函數(shù);
(2)f(x)在[m,n]上的值域?yàn)閇2m,2n],則稱區(qū)間[m,n]為y=f(x)的“倍值區(qū)間”.下列函數(shù)中存在“倍值區(qū)間”的有①③④(填上所有正確的序號(hào))
①f(x)=x2(x≥0)
②f(x)=ex(x∈R)
③$f(x)=\frac{4x}{{{x^2}+1}}({x≥0})$
④$f(x)={log_2}({{2^x}-\frac{1}{8}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.將函數(shù)y=sin(x+$\frac{π}{6}$)(x∈R)的圖象上所有的點(diǎn)向左平移$\frac{π}{4}$個(gè)單位長(zhǎng)度,所得圖象的函數(shù)解析式為( 。
A.y=sin(x+$\frac{π}{12}$)B.y=sin(x-$\frac{π}{12}$)C.y=sin(x+$\frac{5π}{12}$)D.y=sin(x-$\frac{5π}{12}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-(x+1)^{2}+1,x<0}\\{{2}^{x}-1,x≥0}\end{array}\right.$,若函數(shù)g(x)=f(x)-a有三個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.(0,1)B.[0,1)C.(0,1]D.[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.函數(shù)y=cos(2x-$\frac{π}{3}$)的最小正周期是( 。
A.$\frac{π}{2}$B.πC.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若工人月工資(元)依勞動(dòng)產(chǎn)值(萬(wàn)元)變化的回歸直線方程為$\stackrel{∧}{y}$=60+90x,則下列說(shuō)法正確的是③(填序號(hào)).
①勞動(dòng)產(chǎn)值為10000元時(shí),工資為50元;
②勞動(dòng)產(chǎn)值提高10000元時(shí),工資提高150元;
③勞動(dòng)產(chǎn)值提高10000元時(shí),工資提高90元;
④勞動(dòng)產(chǎn)值為10000元時(shí),工資為90元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.在裝有相等數(shù)量的白球和黑球的口袋中放進(jìn)一個(gè)白球,此時(shí)由這個(gè)口袋中取出一個(gè)白球的概率比原來(lái)由此口袋中取出一個(gè)白球的概率大$\frac{1}{22}$,則口袋中原有小球的個(gè)數(shù)為( 。
A.5B.6C.10D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知x>0,則x+$\frac{4}{x}$-1的最小值是( 。
A.4B.3C.2D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案