分析 (1)利用余弦函數(shù)的倍角公式以及三角函數(shù)的輔助角公式進行化簡即可,
(2)利用三角函數(shù)的有界性進行求解即可.
解答 解:(1)f(x)=$\sqrt{3}$sin(2x-$\frac{π}{6}$)+2sin2(x-$\frac{π}{12}$)=$\sqrt{3}$sin(2x-$\frac{π}{6}$)+1-cos(2x-$\frac{π}{6}$)
=2sin(2x-$\frac{π}{3}$)+1,
則函數(shù)的周期T=π.
(2)當sin(2x-$\frac{π}{3}$)=1,即2x-$\frac{π}{3}$=2kπ+$\frac{π}{2}$,即x=kπ+$\frac{5π}{12}$,k∈Z時,函數(shù)取得最大值,
即函數(shù)取得最大值的x的集合為{x|x=kπ+$\frac{5π}{12}$,k∈Z}.
點評 本題主要考查三角函數(shù)性質(zhì)的求解,利用三角函數(shù)的輔助角公式和倍角公式進行化簡是解決本題的關(guān)鍵.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0個 | B. | 1個 | C. | 2個 | D. | 無窮多個 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (8,9) | B. | (8,9] | C. | (12,32) | D. | [12,32) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-1,0) | B. | (-∞,-1)∪(0,1) | C. | (-1,1) | D. | (0,1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com