3.設(shè)$\overrightarrow a$=(1,2),$\overrightarrow b$=(1,1),$\overrightarrow c$=$\overrightarrow a$+k$\overrightarrow b$.若$\overrightarrow b$⊥$\overrightarrow c$,則實(shí)數(shù)k的值等于$-\frac{3}{2}$.

分析 求出向量$\overrightarrow c$,利用向量垂直的充要條件列出方程,求解即可.

解答 解:$\overrightarrow a$=(1,2),$\overrightarrow b$=(1,1),$\overrightarrow c$=$\overrightarrow a$+k$\overrightarrow b$=(1+k,2+k).
若$\overrightarrow b$⊥$\overrightarrow c$,則1+k+2+k=0,
解得k=$-\frac{3}{2}$.
故答案為:-$\frac{3}{2}$.

點(diǎn)評 本題考查向量垂直的充要條件的應(yīng)用,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,中心在坐標(biāo)原點(diǎn),焦點(diǎn)分別在x軸和y軸上的橢圓T1,T2都過點(diǎn)M(0,-$\sqrt{2}$),且橢圓T1與T2的離心率均為$\frac{\sqrt{2}}{2}$.
(Ⅰ)求橢圓T1與橢圓T2的標(biāo)準(zhǔn)方程;
(Ⅱ)過點(diǎn)M引兩條斜率分別為k,k′的直線分別交T1,T2于點(diǎn)P,Q,當(dāng)k′=4k時,問直線PQ是否過定點(diǎn)?若過定點(diǎn),求出定點(diǎn)坐標(biāo);若不過定點(diǎn),請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)y=2x3+1的圖象與函數(shù)y=3x2-b的圖象有三個不相同的交點(diǎn),則實(shí)數(shù)b的取值范圍是( 。
A.(0,2)B.(-2,0)C.(0,4)D.(-1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在六棱錐P-ABCDEF中,底面是邊長為$\sqrt{2}$的正六邊形,PA=2且與底面垂直,則該六棱錐外接球的體積等于4$\sqrt{3}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=sin(ωx+φ)-$\sqrt{3}$cos(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)圖象的相鄰兩條對稱軸為直線x=0與x=$\frac{π}{2}$,則f(x)的最小正周期為π,φ=-$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.圓心在x軸的正半軸上,半徑為雙曲線$\frac{x^2}{16}$-$\frac{y^2}{9}$=1的虛半軸長,且與該雙曲線的漸近線相切的圓的方程是(x-5)2+y2=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知 f(x)=$\frac{a-{2}^{x}}{1+{2}^{x}}$(a∈R)是奇函數(shù),且實(shí)數(shù)k滿足f(2k-1)<$\frac{1}{3}$,則k的取值范圍是(  )
A.(0,+∞)B.(-∞,0)C.(-∞,1)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=$\sqrt{3}$sin(2x-$\frac{π}{6}$)+2sin2(x-$\frac{π}{12}$)(x∈R).
(1)化簡并求函數(shù)f(x)的最小正周期;
(2)求使函數(shù)f(x)取得最大值的x集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知二階矩陣M有特征值λ=-1及對應(yīng)的一個特征向量$[\begin{array}{l}{1}\\{-3}\end{array}]$,且矩陣M對應(yīng)的變換將點(diǎn)(2,-1)變換成(3,1).
(1)求矩陣M;
(2)求矩陣M的逆矩陣.

查看答案和解析>>

同步練習(xí)冊答案