分析 根據(jù)二面角的大小,利用向量的數(shù)量積的應(yīng)用即可求AC的長(zhǎng)度
解答 解:由題意知$\overrightarrow{AB}$⊥$\overrightarrow{BD}$,$\overrightarrow{BD}$⊥$\overrightarrow{DC}$,即$\overrightarrow{AB}$•$\overrightarrow{BD}$=0,$\overrightarrow{BD}$•$\overrightarrow{DC}$=0,<$\overrightarrow{DC}$,$\overrightarrow{BA}$>=60°,
∵$\overrightarrow{AC}$=$\overrightarrow{AB}$+$\overrightarrow{BD}$+$\overrightarrow{DC}$,
∴|$\overrightarrow{AC}$|2=($\overrightarrow{AB}$+$\overrightarrow{BD}$+$\overrightarrow{DC}$)2=|$\overrightarrow{AB}$|2+|$\overrightarrow{BD}$|2+|$\overrightarrow{DC}$|2+2$\overrightarrow{AB}$•$\overrightarrow{BD}$+2$\overrightarrow{DC}$•$\overrightarrow{AB}$+2$\overrightarrow{BD}$′$\overrightarrow{DC}$=|$\overrightarrow{AB}$|2+|$\overrightarrow{BD}$|2+|$\overrightarrow{DC}$|2+2$\overrightarrow{DC}$•$\overrightarrow{AB}$,
∵BD=1,AB=2,CD=3,
∴|$\overrightarrow{AC}$|2=|$\overrightarrow{AB}$|2+|$\overrightarrow{BD}$|2+|$\overrightarrow{DC}$|2+2$\overrightarrow{DC}$•$\overrightarrow{AB}$
=4+9+1+2×3×2cos120°,
=14-6=8,
則|$\overrightarrow{CA}$|=$\sqrt{8}$=2$\sqrt{2}$,
即AC=2$\sqrt{2}$,
故答案為:2$\sqrt{2}$.
點(diǎn)評(píng) 本題主要考查向量數(shù)量積的應(yīng)用,結(jié)合二面角的大小運(yùn)用向量法是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{47}{6}$ | B. | $\frac{15}{2}$ | C. | $\frac{23}{3}$ | D. | 8 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com