18.已知函數(shù)f(x)=x3+bx2+cx+d的圖象如圖,則函數(shù)y=lnf′(x)的單調(diào)減區(qū)間為(  )
A.[0,3)B.[-2,3]C.(-∞,-2)D.[3,+∞)

分析 先求出b、c的值,再由復(fù)合函數(shù)的單調(diào)性可得答案.

解答 解:∵f(x)=x3+bx2+cx+d,
∴f'(x)=3x2+2bx+c
由函數(shù)f(x)的圖象知,f'(-2)=0,f'(3)=0
∴b=-$\frac{3}{2}$,c=-18
∴y=lnf′(x)的定義域?yàn)椋海?∞,-2)∪(3,+∞)
令z=x2-5x-6,在(-∞,-2)上遞減,在(3,+∞)上遞增,且y=lnz
根據(jù)復(fù)合函數(shù)的單調(diào)性知,
函數(shù)y=lnf′(x)的單調(diào)遞減區(qū)間是(-∞,-2)
故選C.

點(diǎn)評(píng) 本題主要考查復(fù)合函數(shù)的單調(diào)性,即同增異減的性質(zhì).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,⊙O內(nèi)接四邊形ABCD的兩條對(duì)角線AC、BD交于點(diǎn)M,AP為⊙O的切線,∠BAP=∠BAC
(I)證明:△ABM≌△DBA;
(II )若BM=2,MD=3,求BC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知函數(shù)f(x)=xlnx+mx2-m在定義域內(nèi)不存在極值點(diǎn),則實(shí)數(shù)m的取值范圍為(-∞,-$\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知函數(shù)f(x)=x3-tx2+3x,函數(shù)f(x)在區(qū)間(1,3)上單調(diào)遞減,則實(shí)數(shù)t的取值范圍是[5,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.定義在R上的函數(shù)f(x)的圖象過(guò)點(diǎn)(0,5),其導(dǎo)函數(shù)是f′(x),且滿足f′(x)<1-f(x),則不等式exf(x)>ex+4(e為自然對(duì)數(shù)的底數(shù))的解集為(-∞,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)函數(shù)f(x)=|x-1|+|x-a|,x∈R.
(1)求證:當(dāng)a=-2時(shí),不等式lnf(x)>1成立;
(2)關(guān)于x的不等式f(x)≥a在R上恒成立,求實(shí)數(shù)a最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}a-|{x+1}|,x\;≤\;1\\{(x-a)^2},\;x>1\end{array}$函數(shù)g(x)=2-f(x),若函數(shù)y=f(x)-g(x)恰有4個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是(2,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,設(shè)銳角△ABC的外接圓ω的圓心為O,經(jīng)過(guò)A,O,C三點(diǎn)的圓ω1的圓心為K,且與邊AB和BC分別相交于點(diǎn)M和N,現(xiàn)知點(diǎn)L與K關(guān)于直線MN對(duì)稱,證明:BL⊥AC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=2x3-6x2+1.
(1)求函數(shù)f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)求函數(shù)f(x)在[-1,3]上的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案