【題目】在四棱錐中,,.
(Ⅰ)若點為的中點,求證:∥平面;
(Ⅱ)當平面平面時,求二面角的余弦值.
【答案】(1)見解析; (2).
【解析】
(I)結合平面與平面平行判定,得到平面BEM平行平面PAD,結合平面與平面性質,證明結論.(II)建立空間坐標系,分別計算平面PCD和平面PDB的法向量,結合向量數(shù)量積公式,計算余弦值,即可.
(Ⅰ)取的中點為,連結,.
由已知得,為等邊三角形,.
∵,,
∴,
∴,∴.
又∵平面,平面,
∴∥平面.
∵為的中點,為的中點,∴∥.
又∵平面,平面,
∴∥平面.
∵,∴平面∥平面.
∵平面,∴∥平面.
(Ⅱ)連結,交于點,連結,由對稱性知,為的中點,且,.
∵平面平面,,
∴平面,,.
以為坐標原點,的方向為軸正方向,建立空間直角坐標系.
則(0,,0),(3,0,0),(0,0,1).
易知平面的一個法向量為.
設平面的法向量為,
則,,∴,
∵,,∴.
令,得,∴,
∴.
設二面角的大小為,則.
科目:高中數(shù)學 來源: 題型:
【題目】隨著“互聯(lián)網(wǎng)+交通”模式的迅猛發(fā)展,“共享單車”在很多城市相繼出現(xiàn).某運營公司為了了解某地區(qū)用戶對其所提供的服務的滿意度,隨機調查了10名用戶,得到用戶的滿意度評分分別為92,84,86,78,89,74,83,77,89.
(1)計算樣本的平均數(shù)和方差;
(2)在(1)條件下,若用戶的滿意度評分在(,)之間,則滿意度等級為“A級”.試估計該地區(qū)滿意度等級為“A級”的用戶所占的百分比.
參考數(shù)據(jù):,,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《九章算術》中有如下問題:今有蒲生一日,長三尺,莞生一日,長1尺.蒲生日自半,莞生日自倍.問幾何日而長等?意思是:今有蒲第一天長高3尺,莞第一天長高1尺,以后蒲每天長高前一天的一半,莞每天長高前一天的2倍.若蒲、莞長度相等,則所需時間為()
(結果精確到0.1.參考數(shù)據(jù):lg2=0.3010,lg3=0.4771.)
A.2.6天B.2.2天C.2.4天D.2.8天
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P-ABCD的底面是直角梯形,,,,平面.
(Ⅰ)設為線段的中點,求證://平面;
(Ⅱ)若,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在,上單調遞增,求實數(shù)的取值范圍;
(2)若函數(shù)在處的切線平行于軸,是否存在整數(shù),使不等式在時恒成立?若存在,求出的最大值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】商場銷售某種商品的經(jīng)驗表明,該商品每日的銷售量(單位:千克)與銷售價格(單位:元/千克)滿足關系式,其中,為常數(shù),已知銷售價格為5元/千克時,每日可售出該商品11千克.
(1) 求的值;
(2) 若商品的成品為3元/千克, 試確定銷售價格的值,使商場每日銷售該商品所獲得的利潤最大
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)=.
(1)求函數(shù)的單調遞增區(qū)間;
(2)已知在△ABC中,A,B,C的對邊分別為a,b,c,若,,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了研究家用轎車在高速公路上的車速情況,交通部門對100名家用轎車駕駛員進行調查,得到其在高速公路上行駛時的平均車速情況為:在55名男性駕駛員中,平均車速超過的有40人,不超過的有15人;在45名女性駕駛員中,平均車速超過的有20人,不超過的有25人.
(1)完成下面的列聯(lián)表,并判斷是否有%的把握認為平均車速超過的人與性別有關.
平均車速超過人數(shù) | 平均車速不超過人數(shù) | 合計 | |
男性駕駛員人數(shù) | |||
女性駕駛員人數(shù) | |||
合計 |
(2)以上述數(shù)據(jù)樣本來估計總體,現(xiàn)從高速公路上行駛的大量家用轎車中隨機抽取3輛,記這3輛車中駕駛員為男性且車速超過的車輛數(shù)為X,若每次抽取的結果是相互獨立的,求X的分布列和數(shù)學期望.
參考公式與數(shù)據(jù):
,其中.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com