17.已知圓C經(jīng)過(guò)點(diǎn)A(2,-1),和直線x+y=1相切,且圓心在直線y=-2x上.
(1)求圓C的方程;
(2)已知斜率為k的直線m過(guò)原點(diǎn),并且被圓C截得的弦長(zhǎng)為2,求直線m的方程.

分析 (1)由題意設(shè)出圓心C的坐標(biāo),由圓與直線相切的關(guān)系列出方程,求出圓C的圓心坐標(biāo)和半徑,即可求出圓的方程;
(2)設(shè)直線m的方程為y=kx,根據(jù)弦長(zhǎng)公式列出方程求出k即可.

解答 解:(1)由題意設(shè)圓心的坐標(biāo)為C(a,-2a),…(1分)
∵圓C經(jīng)過(guò)點(diǎn)A(2,-1),直線x+y=1相切,
∴$\sqrt{(a-2)^{2}+(-2a+1)^{2}}$=$\frac{|a-2a-1|}{\sqrt{2}}$,…(3分)
化簡(jiǎn)得a2-2a+1=0,解得a=1,…(4分)
∴圓心C(1,-2),半徑r=|AC|=$\sqrt{(1-2)^{2}+(-2+1)^{2}}$=$\sqrt{2}$    …(5分)
∴圓C的方程為(x-1)2+(y+2)2=2                …(6分)
(2)設(shè)直線m的方程為y=kx,…(7分)
由題意得$\frac{|k+2|}{{\sqrt{1+{k^2}}}}=\sqrt{{{(\sqrt{2})}^2}-{{(\frac{2}{2})}^2}}$…(9分)
解得k=$-\frac{3}{4}$,…(11分)
∴直線m的方程為$y=-\frac{3}{4}x$.        …(12分)

點(diǎn)評(píng) 本題考查直線與圓的位置關(guān)系,弦長(zhǎng)公式的應(yīng)用,考查方程思想和待定系數(shù)法求圓的方程,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.下列概率模型中,是古典概型的個(gè)數(shù)為(  )
(1)從區(qū)間[1,10]內(nèi)任取一個(gè)數(shù),求取到1的概率;
(2)從1-10中任意取一個(gè)整數(shù),求取到1的概率;
(3)在一個(gè)正方形ABCD內(nèi)畫一點(diǎn)P,求P剛好與點(diǎn)A重合的概率;
(4)向上拋擲一枚不均勻的硬幣,求出現(xiàn)反面朝上的概率.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=x-axlnx,a∈R.
(Ⅰ)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)$g(x)=\frac{f(x)}{lnx}$,若函數(shù)g(x)在(1,+∞)上為減函數(shù),求實(shí)數(shù)a的最小值;
(Ⅲ)在區(qū)間[e,e2]上,若存在x0,使得g(x0)≤g′(x)max+a成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知定義在R上的函數(shù)f(x)滿足f(2)=1,且f(x)的導(dǎo)數(shù)f′(x)在R上的恒有f′(x)<$\frac{1}{4}$(x∈R),則不等式f(x2)<$\frac{{x}^{2}}{4}$+$\frac{1}{2}$的解集為( 。
A.(-∞,-2)∪(2,+∞)B.(-2,2)C.(-∞,-$\sqrt{2}$)∪($\sqrt{2}$,+∞)D.(-$\sqrt{2}$,$\sqrt{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知拋物線x2=4y,直線y=k(k為常數(shù))與拋物線交于A,B兩個(gè)不同點(diǎn),若在拋物線上存在一點(diǎn)P(不與A,B重合),滿足$\overrightarrow{PA}•\overrightarrow{PB}=0$,則實(shí)數(shù)k的取值范圍為( 。
A.k≥2B.k≥4C.0<k≤2D.0<k≤4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.拋物線y2=4x上有兩點(diǎn)A、B到y(tǒng)軸的距離之和為6,則點(diǎn)A、B到此拋物線焦點(diǎn)的距離之和為(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=x3+2f′(1)x2+1,g(x)=x2-ax(a∈R)
(Ⅰ)求f'(l)的值和f(x)的單調(diào)區(qū)間;
(Ⅱ)若對(duì)任意x1∈[-1,1]都存在x2∈(0,2),使得f(x1)≥g(x2),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知A,B,C是球O是球面上三點(diǎn),AB=2,BC=4,∠ABC=$\frac{π}{3}$,且棱錐O-ABC的體積為$\frac{4\sqrt{3}}{3}$,則球O的表面積為2π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)函數(shù)f(x)=1-$\frac{2}{{{2^x}+1}}$(x∈R),
(1)求反函數(shù)f-1(x); 
(2)解不等式f-1(x)>log2(1+x)+1.

查看答案和解析>>

同步練習(xí)冊(cè)答案