【題目】下列命題正確的是( )
A.若兩條直線和同一個平面所成的角相等,則這兩條直線平行
B.若一個平面內(nèi)有三個點到另一個平面的距離相等,則這兩個平面平行
C.若一條直線平行于兩個相交平面,則這條直線與這兩個平面的交線平行
D.若兩個平面都垂直于第三個平面,則這兩個平面平行
【答案】C
【解析】解:A、若兩條直線和同一個平面所成的角相等,則這兩條直線平行、相交或異面,故A錯誤; B、若一個平面內(nèi)有三個點到另一個平面的距離相等,則這兩個平面平行或相交,故B錯誤;
C、設(shè)平面α∩β=a,l∥α,l∥β,由線面平行的性質(zhì)定理,在平面α內(nèi)存在直線b∥l,在平面β內(nèi)存在直線c∥l,所以由平行公理知b∥c,從而由線面平行的判定定理可證明b∥β,進而由線面平行的性質(zhì)定理證明得b∥a,從而l∥a,故C正確;
D,若兩個平面都垂直于第三個平面,則這兩個平面平行或相交,排除D.
故選C.
利用直線與平面所成的角的定義,可排除A;利用面面平行的位置關(guān)系與點到平面的距離關(guān)系可排除B;利用線面平行的判定定理和性質(zhì)定理可判斷C正確;利用面面垂直的性質(zhì)可排除D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從裝有紅球、黑球和白球的口袋中摸出一個球,若摸出的球是紅球的概率是0.4,摸出的球是黑球的概率是0.25,那么摸出的球是白球或黑球的概率是( )
A. 0.35 B. 0.65 C. 0.1 D. 0.6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】集合A={(x,y)|x,y∈R},若x,y∈A,已知x=(x1 , y1),y=(x2 , y2),定義集合A中元素間的運算x*y,稱為“*”運算,此運算滿足以下運算規(guī)律:
①任意x,y∈A有x*y=y*x
②任意x,y,z∈A有(x+y)*z=x*z+y*z(其中x+y=(x1+x2 , y1+y2))
③任意x,y∈A,a∈R有(ax)*y=a(x*y)
④任意x∈A有x*x≥0,且x*x=0成立的充分必要條件是x=(0,0)為向量,如果x=(x1 , y1),y=(x2 , y2),那么下列運算屬于“*”正確運算的是( )
A.x*y=x1y1+2x2y2
B.x*y=x1y1﹣x2y2
C.x*y=x1y1+x2y2+1
D.x*y=2x1x2+y1y2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若a>0,且a≠1,則“函數(shù)y=ax在R上是減函數(shù)”是“函數(shù)y=(2﹣a)x3在R上是增函數(shù)”的( )
A.充分而不必要條件
B.必要而不充分條件
C.充分必要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)有四個命題,其中真命題的個數(shù)是( )
①有兩個平面互相平行,其余各面都是四邊形的多面體一定是棱柱;
②有一個面是多邊形,其余各面都是三角形的多面體一定是棱錐;
③用一個面去截棱錐,底面與截面之間的部分叫棱臺;
④側(cè)面都是長方形的棱柱叫長方體.
A. 0個 B. 1個 C. 2個 D. 3個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|x是三角形},B={x|x是等腰三角形},C={x|x是等腰直角三角形},D={x|x是等邊三角形},則 ( )
A. AB B. CB C. DC D. AD
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】采用系統(tǒng)抽樣方法從1000人中抽取50人做問卷調(diào)查,為此將他們隨機編號為1,2,…,1000,適當(dāng)分組后在第一組采用簡單隨機抽樣的方法抽到的號碼為8.抽到的50人中,編號落入?yún)^(qū)間[1,400]的人做問卷A,編號落入?yún)^(qū)間[401,750]的人做問卷B,其余的人做問卷C.則抽到的人中,做問卷C的人數(shù)為( 。
A.12
B.13
C.14
D.15
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com