6.已知偶函數(shù)f(x)在(0,+∞)上遞減,已知a=0.2${\;}^{\sqrt{2}}$,b=log${\;}_{\sqrt{2}}$0.2,c=$\sqrt{2}$0.2,則f(a),f(b),f(c)  大小為( 。
A.f(a)>f(b)>f(c)B.f(a)>f(c)>f(b)C.f(b)>f(a)>f(c)D.f(c)>f(a)>f(b)

分析 由偶函數(shù)和對(duì)數(shù)的運(yùn)算性質(zhì)得:f(log${\;}_{\sqrt{2}}$0.2)=f(-log${\;}_{\sqrt{2}}$0.2)=f(2log25),由指數(shù)、對(duì)數(shù)函數(shù)的性質(zhì)判斷自變量的大小,再根據(jù)函數(shù)的單調(diào)性判斷大。

解答 解:∵函數(shù)f(x)為偶函數(shù),
∴f(log${\;}_{\sqrt{2}}$0.2)=f(-log${\;}_{\sqrt{2}}$0.2)=f(2log25),
∵$0.{2}^{\sqrt{2}}$∈(0,1),log25>2,${\sqrt{2}}^{0.2}$∈(1,$\sqrt{2}$),
且函數(shù)f(x)在(0,+∞)上單調(diào)遞減,
∴f(0.2${\;}^{\sqrt{2}}$)>f(${\sqrt{2}}^{0.2}$)>f(log${\;}_{\sqrt{2}}$0.2),
∴f(a)>f(c)>f(b).
故選:B.

點(diǎn)評(píng) 本題考查偶函數(shù)的性質(zhì),函數(shù)單調(diào)性,指數(shù)、對(duì)數(shù)函數(shù)的性質(zhì),以及對(duì)數(shù)的運(yùn)算性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.學(xué)校舉辦了一次田徑運(yùn)動(dòng)會(huì),某班有8人參賽,后有舉辦了一次球類運(yùn)動(dòng)會(huì),這個(gè)班有12人參賽,兩次運(yùn)動(dòng)會(huì)都參賽的有3人,兩次運(yùn)動(dòng)會(huì)中,這個(gè)班共有多少名同學(xué)參賽?( 。
A.17B.18C.19D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.定義在$[{\frac{1}{π},π}]$上的函數(shù)f(x),滿足$f(x)=f(\frac{1}{x})$,且當(dāng)$x∈[{\frac{1}{π},1}]$時(shí),f(x)=lnx,若函數(shù)g(x)=f(x)-ax在$[{\frac{1}{π},π}]$上有零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.$[{-\frac{lnπ}{π},0}]$B.[-πl(wèi)nπ,0]C.$[{-\frac{1}{e},\frac{lnπ}{π}}]$D.$[{-\frac{e}{2},-\frac{1}{π}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.復(fù)數(shù)$\frac{2i}{1-i}+2$的虛部是(  )
A.-1B.1C.-iD.i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若存在實(shí)數(shù)a,使得函數(shù)$f(x)=\left\{{\begin{array}{l}{-{x^2}+2(a+1)x+4}&{0<x≤1}\\{{x^a}}&{x>1}\end{array}}\right.$在(0,+∞)上為減函數(shù),則實(shí)數(shù)a的取值范圍是(  )
A.a<0B.a≤-1C.-2≤a≤-1D.-2≤a<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列命題中為真命題的是( 。
A.若x≠0,則x+$\frac{1}{x}$≥2
B.若直線x-ay=0與直線x-ay=0互相垂直,則a=1
C.命題:“若x2=1,則x=1或x=-1”的逆否命題為:“若x≠1,且x≠-1,則x2≠1”
D.一個(gè)命題的否命題為真,則它的逆否命題一定為真

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.《九章算術(shù)》是我國(guó)古代的數(shù)字名著,書中《均屬章》有如下問題:“今有五人分五錢,令上二人所得與下三人等.問各德幾何.”其意思為“已知A、B、C、D、E五人分5錢,A、B兩人所得與C、D、E三人所得相同,且A、B、C、D、E每人所得依次成等差數(shù)列.問五人各得多少錢?”(“錢”是古代的一種重量單位).在這個(gè)問題中,E所得為(  )
A.$\frac{2}{3}$錢B.$\frac{4}{3}$錢C.$\frac{5}{6}$錢D.$\frac{3}{2}$錢

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,O為AD中點(diǎn),M是棱PC上的點(diǎn),AD=2BC.
(1)求證:平面POB⊥平面PAD;
(2)若PA∥平面BMO,求$\frac{PM}{MC}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知復(fù)數(shù)z=2+i,則$\frac{\overline{z}}{z}$=( 。
A.$\frac{3}{5}$-$\frac{4}{5}$iB.-$\frac{3}{5}$+$\frac{4}{5}$iC.$\frac{5}{3}$-$\frac{4}{3}$iD.-$\frac{5}{3}$+$\frac{4}{3}$i

查看答案和解析>>

同步練習(xí)冊(cè)答案