【題目】等腰△ABC中,AC=BC= ,AB=2,E、F分別為AC、BC的中點,將△EFC沿EF折起,使得C到P,得到四棱錐P﹣ABFE,且AP=BP= .
(1)求證:平面EFP⊥平面ABFE;
(2)求二面角B﹣AP﹣E的大。
【答案】
(1)證明:在△ABC中,D為AB中點,O為EF中點.
由AC=BC= ,AB=2.
∵E、F分別為AC、BC的中點,
∴EF為中位線,得CO=OD=1,CO⊥EF
∴四棱錐P﹣ABFE中,PO⊥EF,
∵OD⊥AB,AD=OD=1,∴AO= ,
又AP= ,OP=1,
∴四棱錐P﹣ABFE中,有AP2=AO2+OP2,即OP⊥AO,
又AO∩EF=O,EF、AO平面ABFE,
∴OP⊥平面ABFE,
又OP平面EFP,
∴平面EFP⊥平面ABFE
(2)解:由(1)知OD,OF,OP兩兩垂直,以O(shè)為原點,建立空間直角坐標(biāo)系(如圖):
則A(1,﹣1,0),B(1,1,0),E(0, ,0),P(0,0,1)
∴ , ,
設(shè) , 分別為平面AEP、平面ABP的一個法向量,
則 取x=1,得y=2,z=﹣1
∴ .
同理可得 ,
由于 =0,
所以二面角B﹣AP﹣E為90°.
【解析】(1)用分析法找思路,用綜合法證明.取EF中點O,連接OP、OC.等腰三角形CEF中有CO⊥EF,即OP⊥EF.根據(jù)兩平面垂直的性質(zhì)定理,平面PEF和平面ABFE的交線是EF,且PO⊥EF,分析得PO⊥平面ABFE.故只需根據(jù)題中條件證出PO⊥平面ABFE,即可利用面面垂直的判定定理證得平面EFP⊥平面ABFE.(2)根據(jù)第一問分析空間位置關(guān)系,可建立空間直角坐標(biāo)線求得平面ABP和平面AEP的法向量的所成角,利用向量角和二面角關(guān)系,確定二面角大。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲廠根據(jù)以往的生產(chǎn)銷售經(jīng)驗得到下面有關(guān)生產(chǎn)銷售的關(guān)系:廠里的固定成本為2.8萬元,每生產(chǎn)1百臺的生產(chǎn)成本為1萬元,每生產(chǎn)產(chǎn)品x(百臺),其總成本為G(x)(萬元)(總成本=固定成本+生產(chǎn)成本).如果銷售收入R(x)= ,且該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),請完成下列問題:
(1)寫出利潤函數(shù)y=f(x)的解析式(利潤=銷售收入﹣總成本);
(2)甲廠生產(chǎn)多少臺新產(chǎn)品時,可使盈利最多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=1,an+1= (n∈N*),若bn+1=(n﹣2λ)( +1)(n∈N*),b1=﹣λ,且數(shù)列{bn}是單調(diào)遞增數(shù)列,則實數(shù)λ的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= 在點(1,f(1))處的切線方程為x+y=2. (Ⅰ)求a,b的值;
(Ⅱ)若對函數(shù)f(x)定義域內(nèi)的任一個實數(shù)x,都有xf(x)<m恒成立,求實數(shù)m的取值范圍.
(Ⅲ) 求證:對一切x∈(0,+∞),都有3﹣(x+1)f(x)> ﹣ 成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】a,b為正數(shù),給出下列命題:
①若a2﹣b2=1,則a﹣b<1;
②若 ﹣ =1,則a﹣b<1;
③ea﹣eb=1,則a﹣b<1;
④若lna﹣lnb=1,則a﹣b<1.
期中真命題的有 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P﹣ABCD中,PA⊥底面ABCD,底面ABCD為正方形,PA=AB,該四棱錐被一平面截去一部分后,剩余部分的三視圖如圖,則剩余部分體積與原四棱錐體積的比值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,(e為自然對數(shù)的底數(shù),a,b∈R),若f(x)在x=0處取得極值,且x﹣ey=0是曲線y=f(x)的切線.
(1)求a,b的值;
(2)用min{m,n}表示m,n中的最小值,設(shè)函數(shù) ,若函數(shù)h(x)=g(x)﹣cx2為增函數(shù),求實數(shù)c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016年1月1日起全國統(tǒng)一實施全面的兩孩政策.為了解適齡民眾對放開生育二胎政策的態(tài)度,某市選取70后80后作為調(diào)查對象,隨機(jī)調(diào)查了100人并對調(diào)查結(jié)果進(jìn)行統(tǒng)計,70后不打算生二胎的占全部調(diào)查人數(shù)的15%,80后打算生二胎的占全部被調(diào)查人數(shù)的45%,100人中共有75人打算生二胎.
(1)根據(jù)調(diào)查數(shù)據(jù),判斷是否有90%以上把握認(rèn)為“生二胎與年齡有關(guān)”,并說明理由;
(2)以這100人的樣本數(shù)據(jù)估計該市的總體數(shù)據(jù),且以頻率估計概率,若從該市70后公民中(人數(shù)很多)隨機(jī)抽取3位,記其中打算生二胎的人數(shù)為X,求隨機(jī)變量X的分布列,數(shù)學(xué)期望E(X)和方差D(X). 參考公式:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
( ,其中n=a+b+c+d)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com