【題目】a,b為正數,給出下列命題:
①若a2﹣b2=1,則a﹣b<1;
②若 ﹣ =1,則a﹣b<1;
③ea﹣eb=1,則a﹣b<1;
④若lna﹣lnb=1,則a﹣b<1.
期中真命題的有 .
科目:高中數學 來源: 題型:
【題目】函數y=f(x)的圖象如圖所示.觀察圖象可知函數y=f(x)的定義域、值域分別是( )
A.[﹣5,0]∪[2,6),[0,5]
B.[﹣5,6),[0,+∞)
C.[﹣5,0]∪[2,6),[0,+∞)
D.[﹣5,+∞),[2,5]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別是a,b,c,且 acosC=(2b﹣ c)cosA.
(1)求角A的大。
(2)求cos( ﹣B)﹣2sin2 的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設f(x)是定義在(﹣π,0)∪(0,π)的奇函數,其導函數為f'(x),且 ,當x∈(0,π)時,f'(x)sinx﹣f(x)cosx<0,則關于x的不等式 的解集為( )
A.
B. ??
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|x+3|﹣m+1,m>0,f(x﹣3)≥0的解集為(﹣∞,﹣2]∪[2,+∞). (Ⅰ)求m的值;
(Ⅱ)若x∈R,f(x)≥|2x﹣1|﹣t2+ t成立,求實數t的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】等腰△ABC中,AC=BC= ,AB=2,E、F分別為AC、BC的中點,將△EFC沿EF折起,使得C到P,得到四棱錐P﹣ABFE,且AP=BP= .
(1)求證:平面EFP⊥平面ABFE;
(2)求二面角B﹣AP﹣E的大。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=aln(x+2)﹣x2在(0,1)內任取兩個實數p,q,且p>q,若不等式 恒成立,則實數a的取值范圍是( )
A.(﹣∞,24]
B.(﹣∞,12]
C.[12,+∞)
D.[24,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在某中學舉行的環(huán)保知識競賽中,將三個年級參賽的學生的成績進行整理后分為5組,繪制出如圖所示的頻率分布直方圖,圖中從左到右依次為第一、第二、第三、第四、第五小組,已知第二小組的頻數是40,則成績在80~100分的學生人數是( )
A.15
B.18
C.20
D.25
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓中心在坐標原點,A(2,0),B(0,1)是它的兩個頂點,直線y=kx(k>0)與AB相交于點D,與橢圓相交于E、F兩點.
(Ⅰ)若 ,求k的值;
(Ⅱ)求四邊形AEBF面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com