【題目】在某中學(xué)舉行的環(huán)保知識(shí)競賽中,將三個(gè)年級(jí)參賽的學(xué)生的成績進(jìn)行整理后分為5組,繪制出如圖所示的頻率分布直方圖,圖中從左到右依次為第一、第二、第三、第四、第五小組,已知第二小組的頻數(shù)是40,則成績?cè)?0~100分的學(xué)生人數(shù)是( )

A.15
B.18
C.20
D.25

【答案】A
【解析】解:根據(jù)頻率分布直方圖,得;
第二小組的頻率是0.04×10=0.4,
頻數(shù)是40,
∴樣本容量是 =100;
∴成績?cè)?0~100分的頻率是
(0.01+0.005)×10=0.15,
對(duì)應(yīng)的頻數(shù)(學(xué)生人數(shù))是
100×0.15=15.
故選:A.
【考點(diǎn)精析】通過靈活運(yùn)用用樣本的數(shù)字特征估計(jì)總體的數(shù)字特征,掌握用樣本估計(jì)總體時(shí),如果抽樣的方法比較合理,那么樣本可以反映總體的信息,但從樣本得到的信息會(huì)有偏差.在隨機(jī)抽樣中,這種偏差是不可避免的即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:x∈R,x2+1>m;命題q:指數(shù)函數(shù)f(x)=(3﹣m)x是增函數(shù).若“p∧q”為假命題且“p∨q”為真命題,則實(shí)數(shù)m的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】a,b為正數(shù),給出下列命題:
①若a2﹣b2=1,則a﹣b<1;
②若 =1,則a﹣b<1;
③ea﹣eb=1,則a﹣b<1;
④若lna﹣lnb=1,則a﹣b<1.
期中真命題的有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,(e為自然對(duì)數(shù)的底數(shù),a,b∈R),若f(x)在x=0處取得極值,且x﹣ey=0是曲線y=f(x)的切線.
(1)求a,b的值;
(2)用min{m,n}表示m,n中的最小值,設(shè)函數(shù) ,若函數(shù)h(x)=g(x)﹣cx2為增函數(shù),求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,M,N分別是AB,PC的中點(diǎn),若ABCD是平行四邊形.

(1)求證:MN∥平面PAD.
(2)若PA=AD=2a,MN與PA所成的角為30°.求MN的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2016年1月1日起全國統(tǒng)一實(shí)施全面的兩孩政策.為了解適齡民眾對(duì)放開生育二胎政策的態(tài)度,某市選取70后80后作為調(diào)查對(duì)象,隨機(jī)調(diào)查了100人并對(duì)調(diào)查結(jié)果進(jìn)行統(tǒng)計(jì),70后不打算生二胎的占全部調(diào)查人數(shù)的15%,80后打算生二胎的占全部被調(diào)查人數(shù)的45%,100人中共有75人打算生二胎.
(1)根據(jù)調(diào)查數(shù)據(jù),判斷是否有90%以上把握認(rèn)為“生二胎與年齡有關(guān)”,并說明理由;
(2)以這100人的樣本數(shù)據(jù)估計(jì)該市的總體數(shù)據(jù),且以頻率估計(jì)概率,若從該市70后公民中(人數(shù)很多)隨機(jī)抽取3位,記其中打算生二胎的人數(shù)為X,求隨機(jī)變量X的分布列,數(shù)學(xué)期望E(X)和方差D(X). 參考公式:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】閱讀如圖的程序框圖,運(yùn)行相應(yīng)的程序,輸出的結(jié)果為( )

A.﹣2
B.
C.﹣1
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來我國電子商務(wù)行業(yè)迎來蓬勃發(fā)展新機(jī)遇,2016年雙11期間,某網(wǎng)絡(luò)購物平臺(tái)推銷了A,B,C三種商品,某網(wǎng)購者決定搶購這三種商品,假設(shè)該名網(wǎng)購者都參與了A,B,C三種商品的搶購,搶購成功與否相互獨(dú)立,且不重復(fù)搶購?fù)环N商品,對(duì)A,B,C三件商品搶購成功的概率分別為a,b, ,已知三件商品都被搶購成功的概率為 ,至少有一件商品被搶購成功的概率為
(1)求a,b的值;
(2)若購物平臺(tái)準(zhǔn)備對(duì)搶購成功的A,B,C三件商品進(jìn)行優(yōu)惠減免,A商品搶購成功減免2百元,B商品搶購成功減免4比百元,C商品搶購成功減免6百元.求該名網(wǎng)購者獲得減免總金額(單位:百元)的分別列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2cosx(sinx﹣cosx)+m(m∈R),將y=f(x)的圖象向左平移 個(gè)單位后得到y(tǒng)=g(x)的圖象,且y=g(x)在區(qū)間 內(nèi)的最大值為
(1)求實(shí)數(shù)m的值;
(2)在△ABC中,內(nèi)角A、B、C的對(duì)邊分別是a、b、c,若 ,且a+c=2,求△ABC的周長l的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案