【題目】如圖,在四棱錐P﹣ABCD中,M,N分別是AB,PC的中點(diǎn),若ABCD是平行四邊形.

(1)求證:MN∥平面PAD.
(2)若PA=AD=2a,MN與PA所成的角為30°.求MN的長(zhǎng).

【答案】
(1)

證明:取PD的中點(diǎn)E,連接EN、EA,

∵M(jìn),N分別是AB,PC的中點(diǎn),ABCD是平行四邊形,

∴EN AM,∴四邊形ENMA為平行四邊形

∴MN∥AE,

∵M(jìn)N平面PAD,AE平面PAD,

∴MN∥平面PAD


(2)

解:∵E是PD中點(diǎn),PA=AD=2a,

∴AE是∠PAD的平分線(xiàn),

∵M(jìn)N與PA所成的角為30°,MN∥AE,∴∠PAE=30°,

∴△PAD是等邊三角形,

∴MN=PE= = a.


【解析】(1)取PD的中點(diǎn)E,連接EN、EA,推導(dǎo)出四邊形ENMA為平行四邊形,從而MN∥AE,由此能證明MN∥平面PAD.(2)推導(dǎo)出△PAD是等邊三角形,MN=PE,由此能求出結(jié)果.
【考點(diǎn)精析】本題主要考查了異面直線(xiàn)及其所成的角和直線(xiàn)與平面平行的判定的相關(guān)知識(shí)點(diǎn),需要掌握異面直線(xiàn)所成角的求法:1、平移法:在異面直線(xiàn)中的一條直線(xiàn)中選擇一特殊點(diǎn),作另一條的平行線(xiàn);2、補(bǔ)形法:把空間圖形補(bǔ)成熟悉的或完整的幾何體,如正方體、平行六面體、長(zhǎng)方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線(xiàn)間的關(guān)系;平面外一條直線(xiàn)與此平面內(nèi)的一條直線(xiàn)平行,則該直線(xiàn)與此平面平行;簡(jiǎn)記為:線(xiàn)線(xiàn)平行,則線(xiàn)面平行才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=
(1)當(dāng)m=4時(shí),求函數(shù)f(x)的定義域M;
(2)當(dāng)a,b∈RM時(shí),證明:2|a+b|<|4+ab|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|x+3|﹣m+1,m>0,f(x﹣3)≥0的解集為(﹣∞,﹣2]∪[2,+∞). (Ⅰ)求m的值;
(Ⅱ)若x∈R,f(x)≥|2x﹣1|﹣t2+ t成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=aln(x+2)﹣x2在(0,1)內(nèi)任取兩個(gè)實(shí)數(shù)p,q,且p>q,若不等式 恒成立,則實(shí)數(shù)a的取值范圍是(
A.(﹣∞,24]
B.(﹣∞,12]
C.[12,+∞)
D.[24,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若關(guān)于x的不等式|3x+2|+|3x﹣1|﹣t≥0的解集為R,記實(shí)數(shù)t的最大值為a.
(1)求a;
(2)若正實(shí)數(shù)m,n滿(mǎn)足4m+5n=a,求 的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某中學(xué)舉行的環(huán)保知識(shí)競(jìng)賽中,將三個(gè)年級(jí)參賽的學(xué)生的成績(jī)進(jìn)行整理后分為5組,繪制出如圖所示的頻率分布直方圖,圖中從左到右依次為第一、第二、第三、第四、第五小組,已知第二小組的頻數(shù)是40,則成績(jī)?cè)?0~100分的學(xué)生人數(shù)是( )

A.15
B.18
C.20
D.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=a(x+ )+blnx(其中a,b∈R)
(Ⅰ)當(dāng)b=﹣4時(shí),若f(x)在其定義域內(nèi)為單調(diào)函數(shù),求a的取值范圍;
(Ⅱ)當(dāng)a=﹣1時(shí),是否存在實(shí)數(shù)b,使得當(dāng)x∈[e,e2]時(shí),不等式f(x)>0恒成立,如果存在,求b的取值范圍,如果不存在,說(shuō)明理由(其中e是自然對(duì)數(shù)的底數(shù),e=2.71828…).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線(xiàn)y2=2px(p>0)的焦點(diǎn)為F,準(zhǔn)線(xiàn)為l,A,B是拋物線(xiàn)上的兩個(gè)動(dòng)點(diǎn),且滿(mǎn)足∠AFB= .設(shè)線(xiàn)段AB的中點(diǎn)M在l上的投影為N,則 的最大值是( )
A.

B.

C.

D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于下列四個(gè)命題
p1x0∈(0,+∞),( x0<( x0
p2x0∈(0,1), x0 x0
p3x∈(0,+∞),( x x
p4x∈(0, ),( x x.
其中的真命題是(
A.p1 , p3
B.p1 , p4
C.p2 , p3
D.p2 , p4

查看答案和解析>>

同步練習(xí)冊(cè)答案