【題目】已知函數(shù)f(x)=|x+3|﹣m+1,m>0,f(x﹣3)≥0的解集為(﹣∞,﹣2]∪[2,+∞). (Ⅰ)求m的值;
(Ⅱ)若x∈R,f(x)≥|2x﹣1|﹣t2+ t成立,求實(shí)數(shù)t的取值范圍.

【答案】解:(I)∵函數(shù)f(x)=|x+3|﹣m+1,m>0, f(x﹣3)≥0的解集為(﹣∞,﹣2]∪[2,+∞).
所以f(x﹣3)=|x|﹣m+1≥0,
所以|x|≥m﹣1的解集為為(﹣∞,﹣2]∪[2,+∞).
所以m﹣1=2,
所以m=3;
(II)由(I)得f(x)=|x+3|﹣2
x∈R,f(x)≥|2x﹣1|﹣t2+ t 成立
x∈R,|x+3|﹣|2x﹣1|≥﹣t2+ t+2成立
令g(x)=|x+3|=|2x﹣1|=
故g(x)max=g( )=
則有 |≥﹣t2+ t+2,即|2t2﹣5t+3≥0.
解得t≤1或t≥ ,
∴實(shí)數(shù)t的取值范圍是t≤1或t≥
【解析】(1)將不等式轉(zhuǎn)化為|x|≥m﹣1,根據(jù)其解集情況,確定m;(2)將不等式轉(zhuǎn)化為x∈R,|x+3|﹣|2x﹣1|≥﹣t2+ t+2成立,左邊構(gòu)造函數(shù),只要求出其最大值,得到關(guān)于t的不等式解之即可.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用絕對(duì)值不等式的解法,掌握含絕對(duì)值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對(duì)值的符號(hào)即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}滿足a1=1,an+1=3an+1.
(1)證明{an+ }是等比數(shù)列,并求{an}的通項(xiàng)公式;
(2)證明: + +…+

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線C1的參數(shù)方程為 (a>b>0,φ為參數(shù)),以Ο為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2是圓心在極軸上且經(jīng)過(guò)極點(diǎn)的圓,已知曲線C1上的點(diǎn)M(2, )對(duì)應(yīng)的參數(shù)φ= .θ= 與曲線C2交于點(diǎn)D( ).
(1)求曲線C1 , C2的直角坐標(biāo)方程;
(2)A(ρ1 , θ),B(ρ2 , θ+ )是曲線C1上的兩點(diǎn),求 + 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC是等邊三角形,點(diǎn)D在邊BC的延長(zhǎng)線上,且BC=2CD,AD= . (Ⅰ)求CD的長(zhǎng);
(Ⅱ)求sin∠BAD的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解少年兒童的肥胖是否與常喝碳酸飲料有關(guān),現(xiàn)對(duì)100名五年級(jí)學(xué)生進(jìn)行了問(wèn)卷調(diào)查,得到如下2×2列聯(lián)表,平均每天喝500ml以上為常喝,體重超過(guò)50kg為肥胖.

不常喝

常喝

合計(jì)

肥胖

x

y

50

不肥胖

40

10

50

合計(jì)

A

B

100

現(xiàn)從這100名兒童中隨機(jī)抽取1人,抽到不常喝碳酸飲料的學(xué)生的概率為
(1)求2×2列聯(lián)表中的數(shù)據(jù)x,y,A,B的值;
(2)根據(jù)列聯(lián)表中的數(shù)據(jù)繪制肥胖率的條形統(tǒng)計(jì)圖,并判斷常喝碳酸飲料是否影響肥胖?
(3)是否有99.9%的把握認(rèn)為肥胖與常喝碳酸飲料有關(guān)?說(shuō)明你的理由. 附:參考公式:K2= ,其中n=a+b+c+d.
臨界值表:

P(K2≥k)

0.05

0.025

0.010

0.005

0.001

k

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】a,b為正數(shù),給出下列命題:
①若a2﹣b2=1,則a﹣b<1;
②若 =1,則a﹣b<1;
③ea﹣eb=1,則a﹣b<1;
④若lna﹣lnb=1,則a﹣b<1.
期中真命題的有

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù)f(x)=sin3x+cos3x的圖象沿x軸向左平移個(gè)單位后,得到一個(gè)偶函數(shù)的圖象,則的一個(gè)可能取值為(
A.
B.
C.
D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,M,N分別是AB,PC的中點(diǎn),若ABCD是平行四邊形.

(1)求證:MN∥平面PAD.
(2)若PA=AD=2a,MN與PA所成的角為30°.求MN的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在銳角三角形ABC 中,角 A,B,C 的對(duì)邊分別為 a,b,c.若a=2bsinC,則tanA+tanB+tanC的最小值是(
A.4
B.
C.8
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案