【題目】為了解少年兒童的肥胖是否與常喝碳酸飲料有關(guān),現(xiàn)對(duì)100名五年級(jí)學(xué)生進(jìn)行了問(wèn)卷調(diào)查,得到如下2×2列聯(lián)表,平均每天喝500ml以上為常喝,體重超過(guò)50kg為肥胖.

不常喝

常喝

合計(jì)

肥胖

x

y

50

不肥胖

40

10

50

合計(jì)

A

B

100

現(xiàn)從這100名兒童中隨機(jī)抽取1人,抽到不常喝碳酸飲料的學(xué)生的概率為
(1)求2×2列聯(lián)表中的數(shù)據(jù)x,y,A,B的值;
(2)根據(jù)列聯(lián)表中的數(shù)據(jù)繪制肥胖率的條形統(tǒng)計(jì)圖,并判斷常喝碳酸飲料是否影響肥胖?
(3)是否有99.9%的把握認(rèn)為肥胖與常喝碳酸飲料有關(guān)?說(shuō)明你的理由. 附:參考公式:K2= ,其中n=a+b+c+d.
臨界值表:

P(K2≥k)

0.05

0.025

0.010

0.005

0.001

k

3.841

5.024

6.635

7.879

10.828

【答案】
(1)解:根據(jù)題意,不常喝碳酸飲料的學(xué)生為A=100× =60,∴x=60﹣40=20,y=50﹣20=30,B=30+10=40
(2)解:根據(jù)列聯(lián)表中的數(shù)據(jù)得常喝飲料的肥胖率為 =0.75,

不常喝飲料的肥胖率為 =0.33,

繪制肥胖率的條形統(tǒng)計(jì)圖如圖所示;

根據(jù)統(tǒng)計(jì)圖判斷常喝碳酸飲料會(huì)增加肥胖的可能


(3)解:由已知數(shù)據(jù)可求得:K2= ≈15.629>7.879,

因此有99.5%的把握認(rèn)為肥胖與常喝碳酸飲料有關(guān).


【解析】(1)根據(jù)題意,計(jì)算不常喝碳酸飲料的學(xué)生A,以及對(duì)應(yīng)表中x、y和B的值;(2)根據(jù)列聯(lián)表中的數(shù)據(jù)計(jì)算常喝飲料與不常喝飲料的肥胖率,繪圖即可;根據(jù)統(tǒng)計(jì)圖即可得出概率結(jié)論;(3)計(jì)算觀測(cè)值K2 , 對(duì)照數(shù)表即可得出結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題一定正確的是(
A.在等差數(shù)列{an}中,若ap+aq=ar+aδ , 則p+q=r+δ
B.已知數(shù)列{an}的前n項(xiàng)和為Sn , 若{an}是等比數(shù)列,則Sk , S2k﹣Sk , S3k﹣S2k也是等比數(shù)列
C.在數(shù)列{an}中,若ap+aq=2ar , 則ap , ar , aq成等差數(shù)列
D.在數(shù)列{an}中,若ap?aq=a ,則ap , ar , aq成等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|x≤﹣1或x≥5},集合B={x|2a≤x≤a+2}.
(1)若a=﹣1,求A∩B和A∪B;
(2)若A∩B=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2sinxsin(x+3φ)是奇函數(shù),其中φ∈(0, ),則函數(shù)g(x)=cos(2x﹣φ)的圖象(
A.關(guān)于點(diǎn)( ,0)對(duì)稱
B.可由函數(shù)f(x)的圖象向右平移 個(gè)單位得到
C.可由函數(shù)f(x)的圖象向左平移 個(gè)單位得到
D.可由函數(shù)f(x)的圖象向左平移 個(gè)單位得到

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2+alnx
(1)當(dāng)a=﹣1時(shí),求函數(shù)的單調(diào)區(qū)間和極值
(2)若f(x)在[1,+∞)上是增函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|x+3|﹣m+1,m>0,f(x﹣3)≥0的解集為(﹣∞,﹣2]∪[2,+∞). (Ⅰ)求m的值;
(Ⅱ)若x∈R,f(x)≥|2x﹣1|﹣t2+ t成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)y=﹣sin(ωx+φ)(ω>0,φ∈(﹣ ))的一條對(duì)稱軸為x= ,一個(gè)對(duì)稱中心為( ,0),在區(qū)間[0, ]上單調(diào).
(1)求ω,φ的值;
(2)用描點(diǎn)法作出y=sin(ωx+φ)在[0,π]上的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若關(guān)于x的不等式|3x+2|+|3x﹣1|﹣t≥0的解集為R,記實(shí)數(shù)t的最大值為a.
(1)求a;
(2)若正實(shí)數(shù)m,n滿足4m+5n=a,求 的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: 的一個(gè)焦點(diǎn)為F(3,0),其左頂點(diǎn)A在圓O:x2+y2=12上.
(1)求橢圓C的方程;
(2)直線l:x=my+3(m≠0)交橢圓C于M,N兩點(diǎn),設(shè)點(diǎn)N關(guān)于x軸的對(duì)稱點(diǎn)為N1(點(diǎn)N1與點(diǎn)M不重合),且直線N1M與x軸的交于點(diǎn)P,試問(wèn)△PMN的面積是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案