13.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn.已知a1=1,$\frac{{2{S_n}}}{n}$=an+1-$\frac{1}{3}$n2-n-$\frac{2}{3}$,n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足an-an-1=bna${\;}_{2^n}}$,求數(shù)列{bn的n前項(xiàng)和Tn

分析 (1)利用遞推關(guān)系可得:2an=nan+1-(n-1)an-n(n+1),即$\frac{{{a_{n+1}}}}{n+1}-\frac{a_n}{n}=1$,再利用等差數(shù)列的通項(xiàng)公式即可得出.
(2)an-an-1=bna${\;}_{2^n}}$,可得bn=$\frac{{a}_{n}-{a}_{n-1}}{{a}_{{2}^{n}}}$=$\frac{{n}^{2}-(n-1)^{2}}{{4}^{n}}$=$\frac{2n-1}{{4}^{n}}$.再利用“錯(cuò)位相減法”與等比數(shù)列的求和公式即可得出.

解答 (1)解:∵$\frac{{2{S_n}}}{n}={a_{n+1}}-\frac{1}{3}{n^2}-n-\frac{2}{3}$,n∈N*.∴$2{S_n}=n{a_{n+1}}-\frac{1}{3}{n^3}-{n^2}-\frac{2}{3}n=n{a_{n+1}}-\frac{{n({n+1})({n+2})}}{3}$①
∴當(dāng)n≥2時(shí),$2{S_{n=1}}=({n-1}){a_n}-\frac{{({n-1})n({n+1})}}{3}$②
由①-②,得 2Sn-2Sn-1=nan+1-(n-1)an-n(n+1),
∵2an=2Sn-2Sn-1,∴2an=nan+1-(n-1)an-n(n+1),
∴$\frac{{{a_{n+1}}}}{n+1}-\frac{a_n}{n}=1$,
∴數(shù)列$\left\{{\frac{a_n}{n}}\right\}$是以首項(xiàng)為$\frac{a_1}{1}=1$,公差為1的等差數(shù)列.
∴$\frac{a_n}{n}=1+1×({n-1})=n$,∴${a_n}={n^2}({n≥2})$當(dāng)n=1時(shí),上式顯然成立.
∴an=n2
(2)an-an-1=bna${\;}_{2^n}}$,∴bn=$\frac{{a}_{n}-{a}_{n-1}}{{a}_{{2}^{n}}}$=$\frac{{n}^{2}-(n-1)^{2}}{{4}^{n}}$=$\frac{2n-1}{{4}^{n}}$.
∴數(shù)列{bn的n前項(xiàng)和Tn=$\frac{1}{4}$+$\frac{3}{{4}^{2}}$+$\frac{5}{{4}^{3}}$+…+$\frac{2n-1}{{4}^{n}}$,
∴$\frac{1}{4}$Tn=$\frac{1}{{4}^{2}}$+$\frac{3}{{4}^{3}}$+…+$\frac{2n-3}{{4}^{n}}$+$\frac{2n-1}{{4}^{n}}$,
∴$\frac{3}{4}$Tn=$\frac{1}{4}$+2$(\frac{1}{{4}^{2}}$+…+$\frac{1}{{4}^{n}})$-$\frac{2n-1}{{4}^{n}}$=$\frac{1}{4}$+2×$\frac{\frac{1}{16}(1-\frac{1}{{4}^{n-1}})}{1-\frac{1}{4}}$-$\frac{2n-1}{{4}^{n}}$,
∴Tn=$\frac{5}{9}$-$\frac{6n+5}{9•{4}^{n}}$.

點(diǎn)評 本題考查了“錯(cuò)位相減法”、等差數(shù)列與等比數(shù)列的通項(xiàng)公式及其求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖所示,在直四棱柱ABCD-A1B1C1D1中,側(cè)棱垂直于底面,DB=BC,DB⊥AC,點(diǎn)M是棱BB1上的一點(diǎn).
(1)若DB=BC=CD,求BD與平面CDD1C1所成角;
(2)求證:MD⊥AC;
(3)是否存在點(diǎn)M,使得平面DMC1⊥平面CC1D1D?若存在,試確定點(diǎn)M的位置,并給出證明;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列所給出的賦值語句中正確的是( 。
A.4=XB.a=b=2C.Y=-YD.x+y=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.若函數(shù)f(x)是定義域D內(nèi)的某個(gè)區(qū)間I上的增函數(shù),且h(x)=$\frac{f(x)}{x}$在I上是減函數(shù),則稱y=f(x)是I上的“單反減函數(shù)”,已知f(x)=ex+x,g(x)=x+lnx+$\frac{2}{x}$.
(1)判斷f(x)在(0,+∞)上是否是“單反減函數(shù)”,并說明理由;
(2)若g(x)是[$\frac{a}{4}$,+∞)上的“單反減函數(shù)”,求實(shí)數(shù)a取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)f(x)=x2的定義域是x∈{-2,-1,0,1,2},則該函數(shù)的值域?yàn)閧0,1,4}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.過點(diǎn)(0,$\sqrt{3}$)與圓C:(x-1)2+y2=4相切的直線方程為y=$\frac{\sqrt{3}}{3}$x+$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.記復(fù)數(shù)z的共軛復(fù)數(shù)為$\overline{z}$,若$\overline{z}$(1-i)=2i,則復(fù)數(shù)z的虛部為( 。
A.iB.1C.-iD.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列不等式組中,能表示圖中陰影部分的是( 。
A.$\left\{\begin{array}{l}{y≥1}\\{2x-y+2≥0}\end{array}\right.$B.$\left\{\begin{array}{l}{y≥-1}\\{2x-y+2≤0}\end{array}\right.$
C.$\left\{\begin{array}{l}{x≤0}\\{y≥-1}\\{2x-y+2≤0}\end{array}\right.$D.$\left\{\begin{array}{l}{x≤0}\\{y≥-1}\\{2x-y+2≥0}\end{array}\right.$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)tan(α+β)=$\frac{3}{7}$,tan(β-$\frac{π}{4}$)=-$\frac{1}{3}$,則tan(α+$\frac{π}{4}$)的值是( 。
A.$\frac{2}{3}$B.$\frac{8}{9}$C.$\frac{1}{12}$D.$\frac{1}{9}$

查看答案和解析>>

同步練習(xí)冊答案