15.設(shè)$\overline z=1+i$(i是虛數(shù)單位),則在復(fù)平面內(nèi),${z^-}+\frac{2}{{|{\overline z}|}}$對(duì)應(yīng)的點(diǎn)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 由$\overline z=1+i$求出$|\overline{z}|$,然后代入$\overline{z}+\frac{2}{|\overline{z}|}$化簡(jiǎn)計(jì)算求出在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo),則答案可求.

解答 解:由$\overline z=1+i$,
得|$\overline{z}$|=$\sqrt{2}$.
則$\overline{z}+\frac{2}{|\overline{z|}}=1+i+\frac{2}{\sqrt{2}}=1+\sqrt{2}+i$,
∴在復(fù)平面內(nèi),$\overline{z}+\frac{2}{|\overline{z}|}$對(duì)應(yīng)的點(diǎn)的坐標(biāo)為:($1+\sqrt{2}$,1),位于第一象限.
故選:A.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知過(guò)拋物線y2=8x的焦點(diǎn)F的直線與拋物線交于A,B兩點(diǎn),且|AB|=10,則|AF|•|BF|=20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知角α的終邊經(jīng)過(guò)點(diǎn)(3a,4a)(a≠0),求sinα+cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.若$cosα=\frac{1}{3}$,且α為第四象限角,求$\frac{{sin(-α-\frac{3π}{2})sin(\frac{3π}{2}-α){{tan}^2}(2π-α)}}{{cos(\frac{π}{2}-α)cos(\frac{π}{2}+α)sin(π+α)}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知向量$\overrightarrow a=({1,2}),\overrightarrow b=({-2,m})$,若$\overrightarrow a∥\overrightarrow b$,則m=( 。
A.-1B.-4C.4D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右頂點(diǎn)分別為A,B,其離心率$e=\frac{1}{2}$,點(diǎn)P為橢圓上的一個(gè)動(dòng)點(diǎn),△PAB面積的最大值為$2\sqrt{3}$.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)動(dòng)直線l過(guò)橢圓的左焦點(diǎn)F1,且l與橢圓C交于M,N兩點(diǎn),試問(wèn)在x軸上是否存在定點(diǎn)D,使得$\overrightarrow{DM}•\overrightarrow{DN}$為定值?若存在,求出點(diǎn)D坐標(biāo)并求出定值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知全集U=R,集合A={x|2x-1≤1},B={x|y=log2(3-x)}.
(Ⅰ)求集合∁UA∩B;
(Ⅱ)設(shè)集合C={x|x<a},若A∪C=A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x≥0}\\{\sqrt{1-x},x<0}\end{array}\right.$,則f(f(-3))=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=ex-1+a,函數(shù)g(x)=ax+lnx,a∈R.
(Ⅰ)若曲線y=f(x)與直線y=x相切,求a的值;
(Ⅱ)在(Ⅰ)的條件下,證明:f(x)≥g(x)+1;
(Ⅲ)若函數(shù)f(x)與函數(shù)g(x)的圖象有且僅有一個(gè)公共點(diǎn)P(x0,y0),證明:x0<2.

查看答案和解析>>

同步練習(xí)冊(cè)答案