【題目】設和是雙曲線上的兩點,線段的中點為,直線不經(jīng)過坐標原點.
(1)若直線和直線的斜率都存在且分別為和,求證:;
(2)若雙曲線的焦點分別為、,點的坐標為,直線的斜率為,求由四點、、、所圍成四邊形的面積.
【答案】(1)見解析;(2)
【解析】
(1)法一:設不經(jīng)過點的直線方程為,與雙曲線方程聯(lián)立,利用中點坐標表示,再求;法二:利用點差法表示;
(2)先由已知求得雙曲線方程和直線的方程,由條件表示四邊形的面積;令解,利用的中點是,直接求點的坐標,再表示四邊形的面積.
(1)證明:法1:設不經(jīng)過點的直線方程為,代入雙曲線方程得:.
設坐標為,坐標為,中點坐標為,則,,
,,所以,,.
法2:設、,中點,則,且,
(1)﹣(2)得:.
因為,直線和直線的斜率都存在,所以,
等式兩邊同除以,得:,即.
(2)由已知得,求得雙曲線方程為,直線斜率為,
直線方程為,代入雙曲線方程可解得,中點坐標為.
面積.
另解:線段中點在直線上.所以由中點,可得點的坐標為,代入雙曲線方程可得,即,解得(),所以.面積.
科目:高中數(shù)學 來源: 題型:
【題目】中華文化博大精深,源遠流長,每年都有大批外國游客入境觀光旅游或者學習等,下面是年至年三個不同年齡段外國入境游客數(shù)量的柱狀圖:
下面說法錯誤的是:( )
A.年至年外國入境游客中,歲年齡段人數(shù)明顯較多
B.年以來,三個年齡段的外國入境游客數(shù)量都在逐年增加
C.年以來,歲外國入境游客增加數(shù)量大于歲外國入境游客增加數(shù)量
D.年,歲外國入境游客增長率大于歲外國入境游客增長率
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的各項均為整數(shù),其前n項和為Sn.規(guī)定:若數(shù)列{an}滿足前r項依次成公差為1的等差數(shù)列,從第r﹣1項起往后依次成公比為2的等比數(shù)列,則稱數(shù)列{an}為“r關聯(lián)數(shù)列”.
(1)若數(shù)列{an}為“6關聯(lián)數(shù)列”,求數(shù)列{an}的通項公式;
(2)在(1)的條件下,求出Sn,并證明:對任意n∈N*,anSn≥a6S6;
(3)已知數(shù)列{an}為“r關聯(lián)數(shù)列”,且a1=﹣10,是否存在正整數(shù)k,m(m>k),使得a1+a2+…+ak﹣1+ak=a1+a2+…+am﹣1+am?若存在,求出所有的k,m值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了檢測某種零件的一條生產(chǎn)線的生產(chǎn)過程,從生產(chǎn)線上隨機抽取一批零件,根據(jù)其尺寸的數(shù)據(jù)分成,,,,,,組,得到如圖所示的頻率分布直方圖.若尺寸落在區(qū)間之外,則認為該零件屬“不合格”的零件,其中,分別為樣本平均和樣本標準差,計算可得(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表).
(1)若一個零件的尺寸是,試判斷該零件是否屬于“不合格”的零件;
(2)工廠利用分層抽樣的方法從樣本的前組中抽出個零件,標上記號,并從這個零件中再抽取個,求再次抽取的個零件中恰有個尺寸小于的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設和是雙曲線上的兩點,線段的中點為,直線不經(jīng)過坐標原點.
(1)若直線和直線的斜率都存在且分別為和,求證:;
(2)若雙曲線的焦點分別為、,點的坐標為,直線的斜率為,求由四點、、、所圍成四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在實數(shù)集上的偶函數(shù)和奇函數(shù)滿足.
(1)求與的解析式;
(2)求證:在區(qū)間上單調(diào)遞增;并求在區(qū)間的反函數(shù);
(3)設(其中為常數(shù)),若對于恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲乙兩隊參加聽歌猜歌名游戲,每隊人.隨機播放一首歌曲, 參賽者開始搶答,每人只有一次搶答機會,答對者為本隊贏得一分,答錯得零分, 假設甲隊中每人答對的概率均為,乙隊中人答對的概率分別為,且各人回答正確與否相互之間沒有影響.
(1)若比賽前隨機從兩隊的個選手中抽取兩名選手進行示范,求抽到的兩名選手在同一個隊的概率;
(2)用表示甲隊的總得分,求隨機變量的分布列和數(shù)學期望;
(3)求兩隊得分之和大于4的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是定義在上的函數(shù),滿足.
(1)證明:2是函數(shù)的周期;
(2)當時,,求在時的解析式,并寫出在()時的解析式;
(3)對于(2)中的函數(shù),若關于x的方程恰好有20個解,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某年數(shù)學競賽請自以為來自X星球的選手參加填空題比賽,共10道題目,這位選手做題有一個古怪的習慣:先從最后一題(第10題)開始往前看,凡是遇到會的題就作答,遇到不會的題目先跳過(允許跳過所有的題目),一直看到第1題;然后從第1題開始往后看,凡是遇到先前未答的題目就隨便寫個答案,遇到先前已答的題目則跳過(例如,他可以按照9,8,7,4,3,2,1,5,6,10的次序答題),這樣所有的題目均有作答,設這位選手可能的答題次序有n種,則n的值為( )
A.512B.511C.1024D.1023
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com