【題目】甲乙兩隊參加聽歌猜歌名游戲,每隊.隨機播放一首歌曲, 參賽者開始搶答,每人只有一次搶答機會,答對者為本隊贏得一分,答錯得零分, 假設(shè)甲隊中每人答對的概率均為,乙隊中人答對的概率分別為,且各人回答正確與否相互之間沒有影響.

(1)若比賽前隨機從兩隊的個選手中抽取兩名選手進行示范,求抽到的兩名選手在同一個隊的概率;

(2)表示甲隊的總得分,求隨機變量的分布列和數(shù)學期望;

(3)求兩隊得分之和大于4的概率.

【答案】(1);(2)分布列見解析,;(3)

【解析】

1)用求組合數(shù)的方法,求出從6人中抽取2人的抽法個數(shù),再求出2人來自同一組的抽法個數(shù),按求古典概型概率的方法,即可求解;

2)甲隊中每人答對的概率均為,且每人答題時相互獨立,答對者為本隊贏得一分,甲隊的總得分服從二項分布,,即可求出分布列和期望;

3)兩隊得分之和大于4按互斥事件分為:總分和為5分包括甲隊2分乙隊3分和甲隊3分乙隊2分,總分和為6分甲乙各3分.分別求出以上各互斥事件的概率,然后相加,即可求出結(jié)果.

(1)個選手中抽取兩名選手共有種結(jié)果,

抽到的兩名選手在同一個隊包括同在甲隊或乙隊,

共有:種結(jié)果

表示事件:“從兩隊的個選手中抽取兩名選手,

求抽到的兩名選手在同一個隊.”

故從兩隊的個選手中抽取兩名選手進行示范,

抽到的兩名選手在同一個隊的概率為

(2)由題意知,的可能取值為,且

的分布列為:

的數(shù)學期望.

(3)表示事件:“兩隊得分之和大于,

包括:兩隊得分之和為,兩隊得分之和為,

表示事件:“兩隊得分之和為,

包括甲隊分乙隊分和乙隊分甲隊.

表示事件:“兩隊得分之和為,甲隊分乙隊分,

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ex+ex,g(x)=2xax3a為實常數(shù).

(1)求g(x)的單調(diào)區(qū)間;

(2)當a=-1時,證明:存在x0∈(0,1),使得yf(x)和yg(x)的圖象在xx0處的切線互相平行.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】非空集合關(guān)于運算滿足:①對任意,都有;②存在使得對于一切都有,則稱是關(guān)于運算的融洽集,現(xiàn)有下列集合與運算:①是非負整數(shù)集,:實數(shù)的加法;②是偶數(shù)集,:實數(shù)的乘法;③是所有二次三項式構(gòu)成的集合,:多項式的乘法; ④,:實數(shù)的乘法;其中屬于融洽集的是________(請?zhí)顚懢幪枺?/span>

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著互聯(lián)網(wǎng)+交通模式的迅猛發(fā)展,共享自行車在很多城市相繼出現(xiàn).某運營公司為了了解某地區(qū)用戶對其所提供的服務(wù)的滿意度,隨機調(diào)查了40個用戶,得到用戶的滿意度評分如下:

用戶編號

評分

用戶編號

評分

用戶編號

評分

用戶編號

評分

01

78

11

88

21

79

31

93

02

73

12

86

22

83

32

78

03

81

13

95

23

72

33

75

04

92

14

76

24

74

34

81

05

95

15

97

25

91

35

84

06

85

16

78

26

66

36

77

07

79

17

88

27

80

37

81

08

84

18

82

28

83

38

76

09

63

19

76

29

74

39

85

10

86

20

89

30

82

40

89

現(xiàn)用隨機數(shù)法讀取用戶編號,且從第2行第6列的數(shù)開始向右讀,從40名用戶中抽取容量為10的樣本.(下面是隨機數(shù)表第1行第至第5行)

95 33 95 22 00 18 74 72 00 18 38 79 58 69 32

81 76 80 16 92 04 80 44 25 39 91 03 69 79 83

54 31 62 27 32 94 07 53 89 35 96 35 23 79 18

05 98 90 07 35 46 40 62 98 80 54 97 20 56 95

1)請你列出抽到的10個樣本的評分數(shù)據(jù);

2)計算所抽到的10個樣本的均值和方差

3)在(2)條件下,若用戶的滿意度評分在之間,則滿意度等級為”.試應(yīng)用樣本估計總體的思想,根據(jù)所抽到的10個樣本,估計該地區(qū)滿意度等級為的用戶所占的百分比是多少?(參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】解下列不等式.

1)若方程有兩個實根,求不等式的解集;

2;

3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著經(jīng)濟的發(fā)展,個人收入的提高.自2018年10月1日起,個人所得稅起征點和稅率的調(diào)整.調(diào)整如下:納稅人的工資、薪金所得,以每月全部收入額減除5000元后的余額為應(yīng)納稅所得額.依照個人所得稅稅率表,調(diào)整前后的計算方法如下表:

(1)假如小李某月的工資、薪金等所得稅前收入總和不高于8000元,記表示總收入,y表示應(yīng)納的稅,試寫出調(diào)整前后y關(guān)于的函數(shù)表達式;

(2)某稅務(wù)部門在小李所在公司利用分層抽樣方法抽取某月100個不同層次員工的稅前收入,并制成下面的頻數(shù)分布表:

先從收入在[3000,5000)及[5000,7000)的人群中按分層抽樣抽取7人,再從中選4人作為新納稅法知識宣講員,求兩個宣講員不全是同一收入人群的概率;

(3)小李該月的工資、薪金等稅前收入為7500元時,請你幫小李算一下調(diào)整后小李的實際收入比調(diào)整前增加了多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐ABCD中,AB=ADBDCD,點E、F分別是棱BC、BD的中點.

1)求證:EF∥平面ACD;

2)求證:AEBD

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知關(guān)于直線對稱,且圓心在軸上.

(1)求的標準方程;

(2)已經(jīng)動點在直線上,過點的兩條切線、,切點分別為.

①記四邊形的面積為,求的最小值;

②證明直線恒過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,以原點為極點,軸的正半軸為極軸建立極坐標系,已知曲線的極坐標方程為,直線的參數(shù)方程為為參數(shù)),點的極坐標為,設(shè)直線與曲線相交于兩點

1寫出曲線的直角坐標方程和直線的普通方程;

2的值.

查看答案和解析>>

同步練習冊答案