(本題滿分12分)如圖,在四棱錐中,底面為平行四邊形,,中點(diǎn),平面,
中點(diǎn).

(1)證明://平面
(2)證明:平面;
(3)求直線與平面所成角的正切值.
(1)先證PB//MO,再利用線面平行的判定定理即可證明;
(2)分別證明,,根據(jù)線面垂直的判定定理可證;(3)

試題分析:(1)連接BD,MO,在平行四邊形ABCD中,
因?yàn)镺為AC的中點(diǎn),所以O(shè)為BD的中點(diǎn),
又M為PD的中點(diǎn),所以PB//MO。                                         ……2分
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002425274457.png" style="vertical-align:middle;" />平面ACM,平面ACM,所以PB//平面ACM。                 ……4分
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002425305674.png" style="vertical-align:middle;" />,且AD=AC=1,所以,即,   ……6分
又PO平面ABCD,平面ABCD,所以
,所以平面PAC。                                 ……8分
(3)取DO中點(diǎn)N,連接MN,AN,因?yàn)镸為PD的中點(diǎn),所以MN//PO,
平面ABCD,得平面ABCD,
所以是直線AM與平面ABCD所成的角,                           ……10分
中,,所以,
從而,
,
即直線AM與平面ABCD所成角的正切值為                            ……12分
點(diǎn)評(píng):在空間中證明直線、平面之間的位置關(guān)系時(shí)要嚴(yán)格按照判定定理和性質(zhì)定理進(jìn)行,定理中要求的條件缺一不可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

將邊長(zhǎng)為的正方形ABCD沿對(duì)角線AC折起,使BD=,則三棱錐的體積為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知三棱錐的三視圖如右圖所示,其中側(cè)視圖為直角三角形,俯視圖為等腰直角三角形,則此三棱錐的體積等于( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知某幾何體的三視圖如圖所示,則該幾何體的體積為          。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某高速公路收費(fèi)站入口處的安全標(biāo)識(shí)墩如圖4所示,墩的上半部分是側(cè)面全等的四棱錐P-EFGH,下半部分是長(zhǎng)方體ABCD-EFGH.圖5、圖6分別是該標(biāo)識(shí)墩的正(主)視圖和俯視圖.
(Ⅰ)求該安全標(biāo)識(shí)墩的體積;
(Ⅱ)證明:直線BD平面PEG.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

一個(gè)幾何體的三視圖及其尺寸(單位:cm) ,如圖所示,則該幾何體的側(cè)面積為  cm

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

一個(gè)幾何體的三視圖及其尺寸(單位:cm) ,如圖所示,則該幾何體的體積為(         )
A.144B.C.D.64

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,E、F分別是三棱錐P-ABC的棱AP、BC的中點(diǎn),PC=10,AB=6,EF=7,則異面直線AB與PC所成的角為(   )
A.90°B.60°C.45°D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分)已知直三棱柱中,,點(diǎn)M是的中點(diǎn),Q是AB的中點(diǎn),
(1)若P是上的一動(dòng)點(diǎn),求證:
(2)求二面角大小的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案