(12分)已知直三棱柱中,,點M是的中點,Q是AB的中點,
(1)若P是上的一動點,求證:
(2)求二面角大小的余弦值.
(2)

試題分析:(1)取BC的中點E,連接EQ,因為Q為AB的中點,所以EQ//A1C1,因為AC,此三棱柱為直三棱柱,所以,所以,又因為BC=CC1=1,所以四邊形BB1C1C為正方形,所以,所以,所以.
(2)過C作CN于N點,過N作作,連接FC,
就是二面角大小的平面角,
中,
所以二面角大小的余弦值為.
點評:在證明直線與直線垂直時可考慮使用線面垂直的性質(zhì)定理證明直線垂直另一條直線所在的平面即可.求二面角關(guān)鍵是找出或做出其平面角,常用做平面角的方法就是三垂線定理.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)如圖,在三棱柱中,側(cè)棱與底面垂直,,,點分別為的中點.
(1)證明:平面;
(2)求三棱錐的體積;
(3)證明:平面.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分10分) 在長方體中,分別是的中點,
,.
(Ⅰ)求證://平面;
(Ⅱ)在線段上是否存在點,使直線垂直,
如果存在,求線段的長,如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,直四棱柱中,底面是直角梯形,,

(1)求證:是二面角的平面角;
(2)在上是否存一點,使得與平面與平面都平行?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)如圖,在三棱錐中,
底面,點
分別在棱上,且
(Ⅰ)求證:平面;
(Ⅱ)當的中點時,求與平面所成的角的正弦;
(Ⅲ)是否存在點使得二面角為直二面角?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)如圖,在四棱錐中,底面為平行四邊形,,,中點,平面,
中點.

(1)證明://平面;
(2)證明:平面
(3)求直線與平面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知正三棱錐V-ABC,其側(cè)棱VA=4,底邊正三角形邊長AB=,其主視圖和俯視圖如下圖所示,則其左視圖的面積是                        .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖是一個物體的三視圖,則此三視圖所描述的物體是下列幾何體中的(    )

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若某幾何體的三視圖(單位:cm)如圖所示,則此幾何體的體積等于__________  

查看答案和解析>>

同步練習冊答案