6.下列有關(guān)命題的說法正確的是( 。
A.命題“若x2=1,則x=1”的否命題為:“若x2=1,則x≠1”
B.“x=-1”是“x2-5x-6=0”的必要不充分條件
C.若“p或q”為真命題,則p,q中至少有一個(gè)為真命題
D.命題“若x=y,則cosx=cosy”的逆否命題為假命題

分析 寫出原命題的否命題,可判斷A;根據(jù)充要條件的定義,可判斷B;根據(jù)復(fù)合命題真假判斷的真值表,可判斷C;判斷原命題的真假,結(jié)合互為逆否的兩個(gè)命題,真假性相同,可判斷D.

解答 解:命題“若x2=1,則x=1”的否命題為:“若x2≠1,則x≠1”,故A錯(cuò)誤;
“x2-5x-6=0”?“x=-1,或x=6”,
故“x=-1”是“x2-5x-6=0”的充分不必要條件,故B錯(cuò)誤;
若“p或q”為真命題,則p,q中至少有一個(gè)為真命題,故C正確;
命題“若x=y,則cosx=cosy”為真命題,故其逆否命題為真命題,故D錯(cuò)誤;
故選:C.

點(diǎn)評 本題以命題的真假判斷與應(yīng)用為載體,考查了四種命題,充要條件,復(fù)合命題等知識點(diǎn),難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)集合A={1,1+d,1+2d},B={1,q,q2},若A=B,求d與q的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若一個(gè)圓錐的母線長為4,高為2,則過這個(gè)圓錐的任意兩條母線的截面面積的最大值是8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.如圖所示,已知∠B=30°,∠AOB=90°,點(diǎn)C在AB上,OC⊥AB,點(diǎn)D為OB中點(diǎn),OC與AD相交點(diǎn)H,用$\overrightarrow{OA}$和$\overrightarrow{OB}$來表示向量$\overrightarrow{OH}$,則$\overrightarrow{OH}$等于$\frac{3}{5}$$\overrightarrow{OA}$+$\frac{1}{5}$$\overrightarrow{OB}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.過雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)左焦點(diǎn)F的弦AB⊥x軸,E為雙曲線的右頂點(diǎn),若△ABE為直角三角形,則雙曲線的離心率為( 。
A.2B.$\sqrt{2}$C.3D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若實(shí)數(shù)x,y滿足(x+5)2+(y-12)2=16,則x2+y2的最小值81.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知命題p:曲線y=x2+(2m-3)x+1與x軸相交于不同的兩點(diǎn);命題q:$\frac{x^2}{m}+\frac{y^2}{2}$=1表示焦點(diǎn)在x軸上的橢圓.若“p且q”是假命題,“p或q”是真命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知$P=\left\{{\overrightarrow a\left|{\;}\right.\overrightarrow a=(1,0)+m(0,1),m∈R}\right\}$,$Q=\left\{{\overrightarrow b\left|{\;}\right.\overrightarrow b=(1,1)+n(1,1),n∈R}\right\}$,則P∩Q=( 。
A.{〔1,1〕}B.{〔-1,1〕}C.{〔1,0〕}D.{〔0,1〕}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在三角形ABC中,已知$sinB=\frac{3}{5}$,$cosA=\frac{5}{13}$,則cosC=$\frac{16}{65}$.

查看答案和解析>>

同步練習(xí)冊答案