【題目】為了解本市的交通狀況,某校高一年級的同學(xué)分成了甲、乙、丙三個組,從下午13點(diǎn)到18點(diǎn),分別對三個路口的機(jī)動車通行情況進(jìn)行了實(shí)際調(diào)查,并繪制了頻率分布直方圖(如圖),記甲、乙、丙三個組所調(diào)查數(shù)據(jù)的標(biāo)準(zhǔn)差分別為,則它們的大小關(guān)系為( )

A.B.C.D.

【答案】A

【解析】

根據(jù)頻率分布直方圖以及方差是描述數(shù)據(jù)波動大小的特征值,即數(shù)據(jù)波動性越大,方差就越大,由此判定甲、乙、丙三組數(shù)據(jù)方差的大小

根據(jù)三個頻率分布直方圖,甲組數(shù)據(jù)的兩端數(shù)字較大,絕大部分?jǐn)?shù)字都處在兩端,數(shù)據(jù)偏離平均數(shù)遠(yuǎn),最分散,其方差最大;乙組數(shù)據(jù)是單峰的形態(tài),每一個小長方形的差別比較小,數(shù)字分布均勻,數(shù)據(jù)不如甲組偏離平均數(shù)大,方差比甲組數(shù)據(jù)的方差。槐M數(shù)據(jù)絕大部分?jǐn)?shù)字都在平均數(shù)左右,數(shù)據(jù)最集中,方差最小

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題表示雙曲線,命題表示橢圓.

1)若命題p與命題q都為真命題,則pq的什么條件?

2)若為假命題,且為真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我校高一年級研究性學(xué)習(xí)小組共有9名學(xué)生,其中有3名男生和6名女生.在研究性學(xué)習(xí)過程中,要進(jìn)行兩次匯報(bào)活動(即開題匯報(bào)和結(jié)題匯報(bào)),每次匯報(bào)都從這9名學(xué)生中隨機(jī)選1 人作為代表發(fā)言.設(shè)每人每次被選中與否均互不影響.

1求兩次匯報(bào)活動都由小組成員甲發(fā)言的概率;

2設(shè)為男生發(fā)言次數(shù)與女生發(fā)言次數(shù)之差的絕對值,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線為參數(shù),),曲線為參數(shù)),相切于點(diǎn),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.

1)求的極坐標(biāo)方程及點(diǎn)的極坐標(biāo);

2)已知直線與圓交于兩點(diǎn),記的面積為,的面積為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】20181024日,世界上最長的跨海大橋—港珠澳大橋正式通車。在一般情況下,大橋上的車流速度v(單位:千米/時)是車流密度x(單位:輛/千米)的函數(shù)當(dāng)橋上的車流密度達(dá)到220輛/千米,將造成堵塞,此時車流速度為0;當(dāng)車流密度不超過20輛/千米,車流速度為100千米/時研究表明:當(dāng)時,車流速度v是車流密度x的一次函數(shù).

1)當(dāng)時,求函數(shù)的表達(dá)式;

2)當(dāng)車流密度x為多大時,車流量(單位時間內(nèi)通過橋上某觀測點(diǎn)的車輛數(shù),單位:輛/時)可以達(dá)到最大?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)R上的奇函數(shù),mn是常數(shù).

1)求m,n的值;

2)判斷的單調(diào)性并證明;

3)不等式對任意恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在發(fā)生某公共衛(wèi)生事件期間,有專業(yè)機(jī)構(gòu)認(rèn)為該事件在一段時間內(nèi)沒有發(fā)生大規(guī)模群體感染的標(biāo)志是連續(xù)10天,每天新增疑似病例不超過7”.根據(jù)過去10天甲、乙、丙、丁四地新增疑似病例數(shù)據(jù),一定符合該標(biāo)志的是(

A.甲地:總體均值為3,中位數(shù)為4B.乙地:中位數(shù)為2,眾數(shù)為3

C.丙地:總體均值為2,總體方差為3D.丁地:總體均值為1,總體方差大于0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)零點(diǎn),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某次投籃測試中,有兩種投籃方案:方案甲:先在A點(diǎn)投籃一次,以后都在B點(diǎn)投籃;方案乙:始終在B點(diǎn)投籃.每次投籃之間相互獨(dú)立.某選手在A點(diǎn)命中的概率為,命中一次記3分,沒有命中得0分;在B點(diǎn)命中的概率為,命中一次記2分,沒有命中得0分,用隨機(jī)變量表示該選手一次投籃測試的累計(jì)得分,如果的值不低于3分,則認(rèn)為其通過測試并停止投籃,否則繼續(xù)投籃,但一次測試最多投籃3.

(1)若該選手選擇方案甲,求測試結(jié)束后所得分的分布列和數(shù)學(xué)期望.

(2)試問該選手選擇哪種方案通過測試的可能性較大?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案