已知橢圓C的兩焦點分別為,長軸長為6,
⑴求橢圓C的標準方程;
⑵已知過點(0,2)且斜率為1的直線交橢圓C于A 、B兩點,求線段AB的長度。.
科目:高中數學 來源: 題型:解答題
如圖,橢圓的離心率為,軸被曲線截得的線段長等于的短軸長.與軸的交點為,過坐標原點的直線與相交于點,直線分別與相交于點.
(Ⅰ)求、的方程;
(Ⅱ)求證:;
(Ⅲ)記的面積分別為,若,求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知曲線E上任意一點P到兩個定點F1(-,0)和F2(,0)的距離之和為4.
(1)求曲線E的方程;
(2)設過點(0,-2)的直線l與曲線E交于C、D兩點,且·=0(O為坐標原點),求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知點C(1,0),點A、B是⊙O:x2+y2=9上任意兩個不同的點,且滿足·=0,設P為弦AB的中點.
(1)求點P的軌跡T的方程;
(2)試探究在軌跡T上是否存在這樣的點:它到直線x=-1的距離恰好等于到點C的距離?若存在,求出這樣的點的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設橢圓E:+=1(a>b>0)的上焦點是F1,過點P(3,4)和F1作直線PF1交橢圓于A,B兩點,已知A(,).
(1)求橢圓E的方程;
(2)設點C是橢圓E上到直線PF1距離最遠的點,求C點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,等邊三角形OAB的邊長為8,且其三個頂點均在拋物線E:x2=2py(p>0)上.
(1)求拋物線E的方程;
(2)設動直線l與拋物線E相切于點P,與直線y=-1相交于點Q,證明以PQ為直徑的圓恒過y軸上某定點.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com