如圖,等邊三角形OAB的邊長為8,且其三個頂點均在拋物線E:x2=2py(p>0)上.

(1)求拋物線E的方程;
(2)設(shè)動直線l與拋物線E相切于點P,與直線y=-1相交于點Q,證明以PQ為直徑的圓恒過y軸上某定點.

(1)x2=4y   (2)見解析

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點為雙曲線的左、右焦點,過作垂直于軸的直線,在軸上方交雙曲線于點,且,圓的方程是.
(1)求雙曲線的方程;
(2)過雙曲線上任意一點作該雙曲線兩條漸近線的垂線,垂足分別為、,求的值;
(3)過圓上任意一點作圓的切線交雙曲線、兩點,中點為,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓G:過點,C、D在該橢圓上,直線CD過原點O,且在線段AB的右下側(cè).
(1)求橢圓G的方程;
(2)求四邊形ABCD 的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C的兩焦點分別為,長軸長為6,
⑴求橢圓C的標(biāo)準(zhǔn)方程;
⑵已知過點(0,2)且斜率為1的直線交橢圓C于A 、B兩點,求線段AB的長度。.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知雙曲線的中心在原點,焦點F1,F(xiàn)2在坐標(biāo)軸上,離心率為,且過點(4,-).
(1)求雙曲線方程;
(2)若點M(3,m)在雙曲線上,求證:·=0;
(3)求△F1MF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的離心率,分別為橢圓的長軸和短軸的端點,中點,為坐標(biāo)原點,且.
(1)求橢圓的方程;
(2)過點的直線交橢圓于兩點,求面積最大時,直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C:)的焦距為4,其短軸的兩個端點與長軸的一個端點構(gòu)成正三角形.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)F為橢圓C的左焦點,T為直線上任意一點,過F作TF的垂線交橢圓C于點P,Q.
(i)證明:OT平分線段PQ(其中O為坐標(biāo)原點);
(ii)當(dāng)最小時,求點T的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)
如圖,已知雙曲線的右焦點,點分別在的兩條漸近線上,軸,(為坐標(biāo)原點).

(1)求雙曲線的方程;
(2)過上一點的直線與直線相交于點,與直線相交于點,證明點上移動時,恒為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C1和拋物線C2有公共焦點F(1,0),C1的中心和C2的頂點都在坐標(biāo)原點,過點M(4,0)的直線l與拋物線C2分別相交于A ,B兩點.
(1)如圖所示,若,求直線l的方程;
(2)若坐標(biāo)原點O關(guān)于直線l的對稱點P在拋物線C2上,直線l與橢圓C1有公共點,求橢圓C1的長軸長的最小值.

查看答案和解析>>

同步練習(xí)冊答案