【題目】如圖, 中,,,分別為,邊的中點,以為折痕把折起,使點到達點的位置,且

(1)證明:平面;

(2)求平面與平面所成銳二面角的余弦值.

【答案】(1)見解析;(2)

【解析】

1)由分別為,邊的中點,可得,由已知結(jié)合線面垂直的判定可得平面,從而得到平面;(2)取的中點,連接,由已知證明平面,過,分別以,,所在直線為,,軸建立空間直角坐標(biāo)系,分別求出平面與平面的一個法向量,由兩法向量所成角的余弦值可得平面與平面所成銳二面角的余弦值.

(1)因為分別為邊的中點,

所以,

因為,

所以,,

又因為,

所以平面,

所以平面

(2)取的中點,連接,

由(1)知平面,平面,

所以平面平面,

因為,

所以,

又因為平面,平面平面,

所以平面

,分別以,所在直線為軸建立空間直角坐標(biāo)系,則, ,

,,

設(shè)平面的法向量為,

易知為平面的一個法向量,

所以平面與平面所成銳二面角的余弦值

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,拋物線上橫坐標(biāo)為的點到焦點的距離為.

(Ⅰ)求拋物線的方程及其準線方程;

(Ⅱ)過的直線交拋物線于不同的兩點,交直線于點,直線交直線于點. 是否存在這樣的直線,使得? 若不存在,請說明理由;若存在,求出直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知直線的方程為,曲線是以坐標(biāo)原點為頂點,直線為準線的拋物線.以坐標(biāo)原點為極點,軸非負半軸為極軸建立極坐標(biāo)系.

(1)分別求出直線與曲線的極坐標(biāo)方程:

(2)點是曲線上位于第一象限內(nèi)的一個動點,點是直線上位于第二象限內(nèi)的一個動點,且,請求出的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某射手射擊1,擊中目標(biāo)的概率是0.9,他連續(xù)射擊4,且各次射擊是否擊中目標(biāo)相互之間沒有影響,有下列結(jié)論:

①他第3次擊中目標(biāo)的概率是0.9;

②他恰好擊中目標(biāo)3次的概率是;

③他至少擊中目標(biāo)1次的概率是;

④他至多擊中目標(biāo)1次的概率是

其中正確結(jié)論的序號是(

A.①②③B.①③

C.①④D.①②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y2=2px(p>0)的焦點為F,拋物線上的兩個動點A,B始終滿足∠AFB=60°,過弦AB的中點H作拋物線的準線的垂線HN,垂足為N,的取值范圍為

A.(0,]B.[,+∞)

C.[1,+∞)D.(0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長為的正方體中,的中點,上任意一點,,上兩動點,且的長為定值,則下面四個值中不是定值的是(

A.到平面的距離B.直線與平面所成的角

C.三棱錐的體積D.二面角的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在空間四邊形ABCD的邊AB,BC,CD,DA上分別取點E,F(xiàn),G,H,如果EH,F(xiàn)G相交于一點M,那么M一定在直線________上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右頂點分別為,,上下頂點分別為,,左、右焦點分別為,,離心率為e.

1)若,設(shè)四邊形的面積為,四邊形的面積為,且,求橢圓C的方程;

2)若,設(shè)直線與橢圓C相交于P,Q兩點,分別為線段,的中點,坐標(biāo)原點O在以MN為直徑的圓上,且,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某個命題與自然數(shù)n有關(guān),如果當(dāng))時該命題成立,則可得時該命題也成立,若已知時命題不成立,則下列說法正確的是______(填序號)

1時,該命題不成立;

2時,該命題不成立;

3時,該命題可能成立;

4時,該命題可能成立也可能不成立,但若時命題成立,則對任意,該命題都成立.

查看答案和解析>>

同步練習(xí)冊答案