C.(選修4—4:坐標系與參數(shù)方程)

在極坐標系中,圓的方程為,以極點為坐標原點,極軸為軸的正

半軸建立平面直角坐標系,直線的參數(shù)方程為為參數(shù)),求直線

得的弦的長度.

 

【答案】

的方程化為,兩邊同乘以,得

,得  ……………5分

其圓心坐標為,半徑,又直線的普通方程為,

∴圓心到直線的距離,∴弦長    ………10分

【解析】略

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【選修4-4:坐標系與參數(shù)方程】
在直角坐標系xoy中,直線l的參數(shù)方程為
x=3-
2
2
t
y=
5
-
2
2
t
(t為參數(shù)).在極坐標系(與直角坐標系xoy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,圓C的方程為ρ=2
5
sinθ.
(Ⅰ)求圓C的直角坐標方程;
(Ⅱ)設(shè)圓C與直線l交于點A、B,若點P的坐標為(3,
5
),求|PA|+|PB|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•河南模擬)選修4-4:坐標系與參數(shù)方程
在直角坐標系xoy中,圓C的參數(shù)方程為
x=-
2
2
+rcosθ
y=-
2
2
+rsinθ
(θ為參數(shù)r>0)
以O(shè)為極點,x軸的非負半軸為極軸,并取相同的長度單位建立極坐標系,直線l的極坐標方程ρsin(θ+
π
4
)=
2
2

(I)求圓心的極坐標.
(II)若圓C上點到直線l的最大距離為3,求r的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(選做題)在A、B、C、D四小題中只能選做2題,每小題10分,共計20分.請在答卷紙指定區(qū)域內(nèi)作答.解答應(yīng)寫出文字說明、證明過程或演算步驟.
(B)(選修4-2:矩陣與變換)
二階矩陣M有特征值λ=8,其對應(yīng)的一個特征向量e=
1
1
,并且矩陣M對應(yīng)的變換將點(-1,2)變換成點(-2,4),求矩陣M2
(C)(選修4-4:坐標系與參數(shù)方程)
已知極坐標系的極點在直角坐標系的原點,極軸與x軸的正半軸重合,曲線C的極坐標方程為ρ2cos2θ+3ρ2sin2θ=3,直線l的參數(shù)方程為
x=-
3
t
y=1+t
(t為參數(shù),t∈R).試在曲線C上一點M,使它到直線l的距離最大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•荊州模擬)請在下面兩題中選做一題,如果多做,則按所做的第一題計分.
選修4-1:幾何證明選講
如圖,割線PBC經(jīng)過圓心O,PB=OB=1,圓周上有一點D,滿足∠COD=60°,連PD交圓于點E,則PE=
3
7
7
3
7
7

選修4-4:坐標系與參數(shù)方程
已知直線l經(jīng)過點P(1,-1),傾斜角的余弦值為-
4
5
,圓C的極坐標方程為ρ=
2
cos(θ+
π
4
)
,設(shè)直線l與圓C交于A,B兩點,則弦長|AB|=
7
5
7
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

選修4-4:坐標系與參數(shù)方程
在極坐標系中,已知直線l的極坐標方程為ρsin(θ+
π
4
)=1+
2
,圓C的圓心是C(
2
,
π
4
)
,半徑為
2

(1)求圓C的極坐標方程;
(2)求直線l被圓C所截得的弦長.

查看答案和解析>>

同步練習冊答案