考點(diǎn):二倍角的正弦
專題:計(jì)算題,三角函數(shù)的求值
分析:本題是一個(gè)開方運(yùn)算的題,先用二倍角公式與同角的正弦與余弦的和為1進(jìn)行配方,再討論底數(shù)的符號(hào)進(jìn)行開方即化簡(jiǎn)完畢.
解答:
解:
=
| sin212°+cos212°-2sin12°co12° |
=
=cos12°-sin12°=
cos(45°+12°)=
cos57°
故答案為:
cos57°
點(diǎn)評(píng):本題考查用二倍角公式化簡(jiǎn),遇到根號(hào)下有平方需要開方時(shí)一定注意開出來(lái)的數(shù)的符號(hào),本題屬于基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:
題型:
已知點(diǎn)A(-1,0),B(1,0),直線l:x=-1,P為平面上一動(dòng)點(diǎn),設(shè)直線PA的斜率為k
1,直線PB的斜率k
2,且k
1•k
2=-1,過(guò)P作l的垂線,垂足為Q,則△APQ面積的最大值為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
已知函數(shù)f(x)=lnx-ax+
-1(a為正實(shí)數(shù))
(1)設(shè)0<a<1時(shí),試討論f(x)的單調(diào)性;
(2)設(shè)g(x)=x
2-2bx+4,當(dāng)a=
時(shí),
①若?x
1∈(0,2),存在x
2∈[1,2],使f(x
1)≥g(x
2),求實(shí)數(shù)b的取值范圍.
②對(duì)于任意x
1,x
2∈(1,2]都有|f(x
1)-f(x
2)|≤λ|
-
|,求λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
已知AD、BE分別是△ABC的邊BC、AC上的中線,設(shè)
=
,
=
,且
=
λ+μ
,則λ+μ=
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
已知函數(shù)f(x)=2sin(2x+
),x∈R.
(1)在給定的直角坐標(biāo)系中,運(yùn)用“五點(diǎn)法”畫出該函數(shù)在x∈[-
,
]的圖象;
(2)若θ為銳角,且滿足f(θ)-f(-θ)=1,求θ的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
函數(shù)y=log
2(2x-x
2)的單調(diào)遞增區(qū)間是
,單調(diào)遞減區(qū)間是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
已知a,b,c均為非零實(shí)數(shù),集合A={x|x=
+
+
},則集合A的元素的個(gè)數(shù)為( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
已知函數(shù)F(x)=
在定義域(0,+∞)內(nèi)為單調(diào)增函數(shù),若f(x)=lnx+ax
2,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
已知雙曲線C的左右焦點(diǎn)為F
1,F(xiàn)
2,其中一條漸近線為y=
x,點(diǎn)A在雙曲線C上,若|F
1A|=2|F
2A|,則cos∠AF
2F
1=( )
查看答案和解析>>